6 research outputs found

    Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow–induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.Kendelle J. Murphy ... Michael S. Samuel ... et al. [Australian Pancreatic Genome Initiative (APGI), Australian Pancreatic Cancer Matrix Atlas (APMA)

    Cargo-specific recruitment in clathrin and dynamin-independent endocytosis

    Get PDF
    Spatially controlled, cargo-specific endocytosis is essential for development, tissue homeostasis, and cancer invasion and is often hijacked by viral infections. Unlike clathrin-mediated endocytosis, which exploits cargo-specific adaptors for selective protein internalization, the clathrin and dynamin-independent endocytic pathway (CLIC-GEEC, CG-pathway) has until now been considered a bulk internalization route for the fluid phase, glycosylated membrane proteins and lipids. Although the core molecular players of CG endocytosis have been recently defined, no cargo-specific adaptors are known and evidence of selective protein uptake into the pathway is lacking. Here, we identify the first cargo-specific adaptor for CG-endocytosis and demonstrate its clinical relevance in breast cancer progression. By combining unbiased molecular characterization and super-resolution imaging, we identified the actin-binding protein swiprosin-1 (EFHD2) as a cargo-specific adaptor regulating integrin internalization via the CG-pathway. Swiprosin-1 couples active Rab21-associated integrins with key components of the CG-endocytic machinery, IRSp53 and actin. Swiprosin-1 is critical for integrin endocytosis, but not for other CG-cargo and supports integrin-dependent cancer cell migration and invasion, with clinically relevant implications for breast cancer. Our results demonstrate a previously unknown cargo selectivity for the CG-pathway and opens the possibility to discover more adaptors regulating it

    Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment

    No full text
    Basic in vitro systems can be used to model and assess complex diseases, such as cancer. Recent advances in this field include the incorporation of multiple cell types and extracellular matrix proteins into three-dimensional (3D) models to recapitulate the structure, organization and functionality of live tissue in situ. Cells within such a 3D environment behave very differently from cells on two-dimensional (2D) substrates, as cell–matrix interactions trigger signalling pathways and cellular responses in 3D, which may not be observed in 2D. Thus, the use of 3D systems can be advantageous for the assessment of disease progression over 2D set-ups alone. Here, we highlight the current advantages and challenges of employing 3D systems in the study of cancer and provide an overview to guide the appropriate use of distinct models in cancer research

    Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

    No full text
    Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN). Here, using Chinese hamster ovary (CHO) Niemann-Pick type C1 (NPC1) mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6) accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs). This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion. © 2014 The Authors

    Probability of major depression classification based on the SCID, CIDI, and MINI diagnostic interviews: A synthesis of three individual participant data meta-analyses

    No full text
    Introduction: Three previous individual participant data meta-analyses (IPDMAs) reported that, compared to the Structured Clinical Interview for the DSM (SCID), alternative reference standards, primarily the Composite International Diagnostic Interview (CIDI) and the Mini International Neuropsychiatric Interview (MINI), tended to misclassify major depression status, when controlling for depression symptom severity. However, there was an important lack of precision in the results. Objective: To compare the odds of the major depression classification based on the SCID, CIDI, and MINI. Methods: We included and standardized data from 3 IPDMA databases. For each IPDMA, separately, we fitted binomial generalized linear mixed models to compare the adjusted odds ratios (aORs) of major depression classification, controlling for symptom severity and characteristics of participants, and the interaction between interview and symptom severity. Next, we synthesized results using a DerSimonian-Laird random-effects meta-analysis. Results: In total, 69,405 participants (7,574 [11%] with major depression) from 212 studies were included. Controlling for symptom severity and participant characteristics, the MINI (74 studies; 25,749 participants) classified major depression more often than the SCID (108 studies; 21,953 participants; aOR 1.46; 95% confidence interval [CI] 1.11-1.92]). Classification odds for the CIDI (30 studies; 21,703 participants) and the SCID did not differ overall (aOR 1.19; 95% CI 0.79-1.75); however, as screening scores increased, the aOR increased less for the CIDI than the SCID (interaction aOR 0.64; 95% CI 0.52-0.80). Conclusions: Compared to the SCID, the MINI classified major depression more often. The odds of the depression classification with the CIDI increased less as symptom levels increased. Interpretation of research that uses diagnostic interviews to classify depression should consider the interview characteristics. © 202
    corecore