20 research outputs found

    Use of digital measurement of medication adherence and lung function to guide the management of uncontrolled asthma (INCA Sun):a multicentre, single-blinded, randomised clinical trial

    Get PDF
    BACKGROUND: The clinical value of using digital tools to assess adherence and lung function in uncontrolled asthma is not known. We aimed to compare treatment decisions guided by digitally acquired data on adherence, inhaler technique, and peak flow with existing methods.METHODS: A 32-week prospective, multicentre, single-blinded, parallel, randomly controlled trial was done in ten severe asthma clinics across Ireland, Northern Ireland, and England. Participants were 18 years or older, had uncontrolled asthma, asthma control test (ACT) score of 19 or less, despite treatment with high-dose inhaled corticosteroids, and had at least one severe exacerbation in the past year despite high-dose inhaled corticosteroids. Patients were randomly assigned in a 1:1 ratio to the active group or the control group, by means of a computer-generated randomisation sequence of permuted blocks of varying sizes (2, 4, and 6) stratified by fractional exhaled nitric oxide (FeNO) concentration and recruitment site. In the control group, participants were masked to their adherence and errors in inhaler technique data. A statistician masked to study allocation did the statistical analysis. After a 1-week run-in period, both groups attended three nurse-led education visits over 8 weeks (day 7, week 4, and week 8) and three physician-led treatment adjustment visits at weeks 8, 20, and 32. In the active group, treatment adjustments during the physician visits were informed by digital data on inhaler adherence, twice daily digital peak expiratory flow (ePEF), patient-reported asthma control, and exacerbation history. Treatment was adjusted in the control group on the basis of pharmacy refill rates (a measure of adherence), asthma control by ACT questionnaire, and history of exacerbations and visual management of inhaler technique. Both groups used a digitally enabled Inhaler Compliance Assessment (INCA) and PEF. The primary outcomes were asthma medication burden measured as proportion of patients who required a net increase in treatment at the end of 32 weeks and adherence rate measured in the last 12 weeks by area under the curve in the intention-to-treat population. The safety analyses included all patients who consented for the trial. The trial is registered with ClinicalTrials.gov, NCT02307669 and is complete.FINDINGS: Between Oct 25, 2015, and Jan 26, 2020, of 425 patients assessed for eligibility, 220 consented to participate in the study, 213 were randomly assigned (n=108 in the active group; n=105 in the control group) and 200 completed the study (n=102 in the active group; n=98 in the control group). In the intention-to-treat analysis at week 32, 14 (14%) active and 31 (32%) control patients had a net increase in treatment compared with baseline (odds ratio [OR] 0·31 [95% CI 0·15-0·64], p=0·0015) and 11 (11%) active and 21 (21%) controls required add-on biological therapy (0·42 [0·19-0·95], p=0·038) adjusted for study site, age, sex, and baseline FeNO. Three (16%) of 19 active and 11 (44%) of 25 control patients increased their medication from fluticasone propionate 500 μg daily to 1000 μg daily (500 μg twice a day; adjusted OR 0·23 [0·06-0·87], p=0·026). 26 (31%) of 83 active and 13 (18%) of 73 controls reduced their medication from fluticasone propionate 1000 μg once daily to 500 μg once daily (adjusted OR 2·43 [1·13-5·20], p=0·022. Week 20-32 actual mean adherence was 64·9% (SD 23·5) in the active group and 55·5% (26·8) in the control group (between-group difference 11·1% [95% CI 4·4-17·9], p=0·0012). A total of 29 serious adverse events were recorded (16 [55%] in the active group, and 13 [45%] in the control group), 11 of which were confirmed as respiratory. None of the adverse events reported were causally linked to the study intervention, to the use of salmeterol-fluticasone inhalers, or the use of the digital PEF or INCA.INTERPRETATION: Evidence-based care informed by digital data led to a modest improvement in medication adherence and a significantly lower treatment burden.FUNDING: Health Research Board of Ireland, Medical Research Council, INTEREG Europe, and an investigator-initiated project grant from GlaxoSmithKline.</p

    An unusual pulmonary condition presenting following trauma

    No full text
    An 18-year-old man presented to the emergency department following an assault. He complained of left-sided pleuritic chest pain and difficulty breathing. Clinical examination revealed reduced air entry and coarse crepitations at the left lung base. A chest x-ray showed a large opacity at the left lung base that contained multiple cystic areas with air-fluid levels. Due to the history of trauma, a provisional diagnosis of a ruptured hemidiaphragm with small bowel herniation was made. Further imaging, including ultrasound, spiral computed tomography and magnetic resonance angiography, showed an aberrant vessel supplying the opacity and drainage into the pulmonary venous system. A diagnosis of a bronchopulmonary sequestration (intralobar type) was made. The differential diagnosis of the radiographic appearance is also discussed

    Sedentary behaviour and physical activity in bronchiectasis: a cross-sectional study

    Get PDF
    Background: The impact of bronchiectasis on sedentary behaviour and physical activity is unknown. It is important to explore this to identify the need for physical activity interventions and how to tailor interventions to this patient population. We aimed to explore the patterns and correlates of sedentary behaviour and physical activity in bronchiectasis. Methods: Physical activity was assessed in 63 patients with bronchiectasis using an ActiGraph GT3X+accelerometer over seven days. Patients completed: questionnaires on health-related quality-of-life and attitudes to physical activity (questions based on an adaption of the transtheoretical model (TTM) of behaviour change); spirometry; and the modified shuttle test (MST). Multiple linear regression analysis using forward selection based on likelihood ratio statistics explored the correlates of sedentary behaviour and physical activity dimensions.Between-group analysis using independent sample t-tests were used to explore differences for selected variables. Results: Fifty-five patients had complete datasets. Average daily time, mean(standard deviation) spent in sedentary behaviour was 634(77)mins, light-lifestyle physical activity was207(63)mins and moderate-vigorous physical activity (MVPA) was 25(20)mins. Only11% of patients met recommended guidelines. Forced expiratory volume in one-second percentage predicted (FEV1% predicted) and disease severity were not correlates of sedentary behaviour or physical activity. For sedentary behaviour, decisional balance 'pros' score was the only correlate. Performance on the MST was the strongest correlate of physical activity. In addition to the MST, there were other important correlate variables for MVPA accumulated in ≥10-minute bouts (QOL-B Social Functioning)and for activity energy expenditure (Body Mass Index and QOL-B Respiratory Symptoms). Conclusions: Patients with bronchiectasis demonstrated a largely inactive lifestyle and few met the recommended physical activity guidelines. Exercise capacity was the strongest correlate of physical activity, and dimensions of the QOL-B were also important. FEV1% predicted and disease severity were not correlates of sedentary behaviour or physical activity. The inclusion of a range of physical activity dimensions could facilitate in-depth exploration of patterns of physical activity. This study demonstrates the need for interventions targeted at reducing sedentary behaviour and increasing physical activity, and provides information to tailor interventions to the bronchiectasis population

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE

    No full text
    International audienceThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    No full text
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    No full text
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 ×\times  6 ×\times  6 m3^3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation
    corecore