3 research outputs found

    Selectively targeting the kinome-conserved lysine of PI3K (delta) as a general approach to covalent kinase inhibition

    Get PDF
    Selective covalent inhibition of kinases by targeting poorly conserved cysteines has proven highly fruitful to date in the development of chemical probes and approved drugs. However, this approach is limited to ~200 kinases possessing such a cysteine near the ATP-binding pocket. Herein, we report a novel approach to achieve selective, irreversible kinase inhibition, by targeting the conserved catalytic lysine residue. We have illustrated our approach by developing selective, covalent PI3Kδ inhibitors that exhibit nanomolar potency in cellular assays, and a duration of action >48 h in CD4+ T cells. Despite conservation of the lysine residue throughout the kinome, the lead compound shows high levels of selectivity over a selection of lipid and protein kinases in biochemical assays, as well as covalent binding to very few off-target proteins in live-cell proteomic studies. We anticipate this approach could offer an alternative general strategy, to targeting non-conserved cysteines, for the development of selective covalent kinase inhibitors

    Design and development of a macrocyclic series targeting phosphoinositide 3-kinase δ

    Get PDF
    A macrocyclization approach has been explored on a series of benzoxazine phosphoinositide 3-kinase δ inhibitors, resulting in compounds with improved potency, permeability, and in vivo clearance while maintaining good solubility. The thermodynamics of binding was explored via surface plasmon resonance, and the binding of lead macrocycle 19 was found to be almost exclusively entropically driven compared with progenitor 18, which demonstrated both enthalpic and entropic contributions. The pharmacokinetics of macrocycle 19 was also explored in vivo, where it showed reduced clearance when compared with the progenitor 18. This work adds to the growing body of evidence that macrocyclization could provide an alternative and complementary approach to the design of small-molecule inhibitors, with the potential to deliver differentiated properties

    The Identification and Pharmacological Characterization of 6-(tert-Butylsulfonyl)-N-(5-fluoro-1H-indazol-3-yl)quinolin-4-amine (GSK583), a Highly Potent and Selective Inhibitor of RIP2 Kinase

    No full text
    RIP2 kinase is a central component of the innate immune system and enables downstream signaling following activation of the pattern recognition receptors NOD1 and NOD2, leading to the production of inflammatory cytokines. Recently, several inhibitors of RIP2 kinase have been disclosed that have contributed to the fundamental understanding of the role of RIP2 in this pathway. However, because they lack either broad kinase selectivity or strong affinity for RIP2, these tools have only limited utility to assess the role of RIP2 in complex environments. We present, herein, the discovery and pharmacological characterization of GSK583, a next-generation RIP2 inhibitor possessing exquisite selectivity and potency. Having demonstrated the pharmacological precision of this tool compound, we report its use in elucidating the role of RIP2 kinase in a variety of in vitro, in vivo, and ex vivo experiments, further clarifying our understanding of the role of RIP2 in NOD1 and NOD2 mediated disease pathogenesis
    corecore