10,213 research outputs found

    Wolf-Rayet phenomena

    Get PDF
    The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included

    Mass-loss rates from early-type stars

    Get PDF
    The mass loss rates are derived for a number of unevolved O-type stars and a few WN stars from high dispersion IUE spectra of their P Cygni profiles. When combined with other published mass loss rates, it is found that the relationship between log m and M sub BOL is a broad band rather than a linear relation, suggesting that the line radiation driven wind theory may not be sufficient to explain mass loss. The mass loss rates for the WN stars, while more uncertain, confirm that these stars lose mass about 100 times faster than O-stars

    Spectroscopic observations of selected stellar systems

    Get PDF
    Spectra of very luminous, high temperature stars, the o-type stars with the largest masses among stars, and the Wolf-Rayet (W-R) stars are studied. These stars are characterized by strong stellar winds which produce signiicant mass loss. The nature and evolution of these winds are studied to learn the densities, velocity structue, ionization balance, and composition. The IUE satellite provides the best way to study these phenomena because many of the most important ground state and excited state lines of common highly ionized species are found in the spectral range

    The Stellar Content of Obscured Galactic Giant H II Regions: II. W42

    Get PDF
    We present near infrared J, H, and K images and K-band spectroscopy in the giant HII region W42. A massive star cluster is revealed; the color-color plot and K-band spectroscopic morphology of two of the brighter objects suggest the presence of young stellar objects. The spectrum of the bright central star is similar to unobscured stars with MK spectral types of O5-O6.5. If this star is on the zero age main sequence, then the derived spectrophotometric distance is considerably smaller than previous estimates. The Lyman continuum luminosity of the cluster is a few times that of the Trapezium. The slope of the K-band luminosity function is similar to that for the Trapezium cluster and significantly steeper than that for the massive star cluster in M17 or the Arches cluster near the Galactic center.Comment: 30 pages, 11 figures, late

    Exchange-correlation potential for Current Density Functional Theory of frequency dependent linear response

    Full text link
    The dynamical, long-wavelength longitudinal and transverse exchange-correlation potentials for a homogeneous electron gas are evaluated in a microscopic model based on an approximate decoupling of the equation of motion for the current-current response function. The transverse spectrum turns out to be very similar to the longitudinal one. We obtain evidence for a strong spectral structure near twice the plasma frequency due to a two-plasmon threshold for two-pair excitations, which may be observable in inelastic scattering experiments. Our results give the entire input needed to implement the Time-Dependent Current Density Functional Theory scheme recently developed by G. Vignale and W. Kohn [Phys. Rev. Lett. 77, 2037 (1996)] and are fitted to analytic functions to facilitate such applications.Comment: 6 pages, 3 figure

    Solvable Lie algebras are not that hypo

    Full text link
    We study a type of left-invariant structure on Lie groups, or equivalently on Lie algebras. We introduce obstructions to the existence of a hypo structure, namely the 5-dimensional geometry of hypersurfaces in manifolds with holonomy SU(3). The choice of a splitting g^*=V_1 + V_2, and the vanishing of certain associated cohomology groups, determine a first obstruction. We also construct necessary conditions for the existence of a hypo structure with a fixed almost-contact form. For non-unimodular Lie algebras, we derive an obstruction to the existence of a hypo structure, with no choice involved. We apply these methods to classify solvable Lie algebras that admit a hypo structure.Comment: 21 pages; v2: presentation improved, typos corrected, notational conflicts eliminated. To appear in Transformation Group

    The RD53 Collaboration's SystemVerilog-UVM Simulation Framework and its General Applicability to Design of Advanced Pixel Readout Chips

    Full text link
    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger latency buffering section of pixel chips. A fully shared architecture and a distributed one have been described at behavioral level and simulated; the resulting memory occupancy statistics and hit loss rates have subsequently been compared.Comment: 15 pages, 10 figures (11 figure files), submitted to Journal of Instrumentatio

    On the generation and the nonlinear dynamics of X-waves of the Schroedinger equation

    Full text link
    The generation of finite energy packets of X-waves is analysed in normally dispersive cubic media by using an X-wave expansion. The 3D nonlinear Schroedinger model is reduced to a 1D equation with anomalous dispersion. Pulse splitting and beam replenishment as observed in experiments with water and Kerr media are explained in terms of a higher order breathing soliton. The results presented also hold in periodic media and Bose-condensed gases.Comment: 18 pages, 6 figures, corrected version to be published in Physical Review

    Flow field predictions for a slab delta wing at incidence

    Get PDF
    Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data
    • …
    corecore