5 research outputs found

    Improvement of a culinary recipe by applying sensory analysis: Design of the New Tarte Tatin

    Full text link
    During the last decade, knowledge of food science and technology has been applied to Haute Cuisine obtaining great benefits. The most important chefs of the world are keen on gaining knowledge about the physicochemical changes to food after any culinary process, as well as the art of combining different flavors in order to obtain both new flavors and new textures. This could allow chefs to develop new processes and hence gain a competitive advantage in their restaurants. Sensory analysis can be a good tool to develop new products in a restaurant, in particular, new desserts. Consumer response to the sensory properties of food (particularly appearance, flavor, aroma, taste and texture) is an important factor in determining the success of new products. Therefore, the aim of this work was to develop a new dessert, based on the classic French dessert ‘‘Tarte Tatin’’ (an upside down fruit tart, usually made with apples), using sensory analysis as a crucial tool in its design. The preference for different apple products prepared using different methods of cooking, was evaluated by a consumer panel and the statistical analysis showed significant differences (a ¼ 0.05) between the processesGarcía Segovia, P.; Barreto Palacios, VJ.; Iborra Bernad, MDC.; Andrés Bello, MD.; González Carrascosa, R.; Bretón, J.; Martínez Monzó, J. (2012). Improvement of a culinary recipe by applying sensory analysis: Design of the New Tarte Tatin. International Journal of Gastronomy and Food Science. 1(1):54-60. doi:10.1016/j.ijgfs.2011.11.01154601

    Evaluation of Textural and Sensory Properties on Typical Spanish Small Cakes Designed Using Alternative Flours

    Full text link
    [EN] The objective of this study was to evaluate the effect of wheat flour substitution with toasted corn, quinoa, and sorghum flours on the overall perception and texture of typical Spanish small cakes named madeleine. In order to evaluate these characteristics, a texture profile analysis (TPA) and a sensory analysis were carried out. TPA showed that the replacement of wheat flour by sorghum flour did not affect significantly texture parameters of cakes. Hedonic sensory tests were also conducted revealing that the cake prepared with sorghum flour was highly appreciated by the consumers as it got scores similar to traditional cakes made with wheat flour.Casas Moreno, MDM.; Barreto Palacios, VJ.; González Carrascosa, R.; Iborra Bernad, MDC.; Andrés Bello, MD.; Martínez Monzó, J.; García-Segovia, P. (2015). Evaluation of Textural and Sensory Properties on Typical Spanish Small Cakes Designed Using Alternative Flours. Journal of Culinary Science and Technology. 13(1):19-28. doi:10.1080/15428052.2014.952475S1928131Baldwin, R. R., Baldry, R. P., & Johansen, R. G. (1972). Fat systems for bakery products. Journal of the American Oil Chemists’ Society, 49(8), 473-477. doi:10.1007/bf02582482Beleia, A., Miller, R. A., & Hoseney, R. C. (1996). Starch Gelatinization in Sugar Solutions. Starch - Starke, 48(7-8), 259-262. doi:10.1002/star.19960480705Brannan, G. L., Setser, C. S., Kemp, K. E., Seib, P. A., & Roozeboom, K. (2001). Sensory Characteristics of Grain Sorghum Hybrids with Potential for Use in Human Food. Cereal Chemistry Journal, 78(6), 693-700. doi:10.1094/cchem.2001.78.6.693Cauvain, S. P., & Young, L. S. (Eds.). (2006). Baked Products. doi:10.1002/9780470995907Chieh, C. (s. f.). Water. Bakery Products, 211-232. doi:10.1002/9780470277553.ch11Conforti, F. D. (s. f.). Cake Manufacture. Bakery Products, 393-410. doi:10.1002/9780470277553.ch22Ghotra, B. S., Dyal, S. D., & Narine, S. S. (2002). Lipid shortenings: a review. Food Research International, 35(10), 1015-1048. doi:10.1016/s0963-9969(02)00163-1Kiosseoglou, V., & Paraskevopoulou, A. (s. f.). Eggs. Bakery Products, 161-172. doi:10.1002/9780470277553.ch8Lai, H.-M., & Lin, T.-C. (s. f.). Bakery Products: Science and Technology. Bakery Products, 3-68. doi:10.1002/9780470277553.ch1Lau, M. ., Tang, J., & Paulson, A. . (2000). Texture profile and turbidity of gellan/gelatin mixed gels. Food Research International, 33(8), 665-671. doi:10.1016/s0963-9969(00)00111-3LINDLEY, M. G. (1987). Sucrose in baked products. Nutrition Bulletin, 12(1), 41-45. doi:10.1111/j.1467-3010.1987.tb00011.xMastromatteo, M., Chillo, S., Iannetti, M., Civica, V., & Del Nobile, M. A. (2011). Formulation optimisation of gluten-free functional spaghetti based on quinoa, maize and soy flours. International Journal of Food Science & Technology, 46(6), 1201-1208. doi:10.1111/j.1365-2621.2011.02613.xOreopoulou, V. (s. f.). Fat Replacers. Bakery Products, 193-210. doi:10.1002/9780470277553.ch10Peressini, D., Pin, M., & Sensidoni, A. (2011). Rheology and breadmaking performance of rice-buckwheat batters supplemented with hydrocolloids. Food Hydrocolloids, 25(3), 340-349. doi:10.1016/j.foodhyd.2010.06.012Sanz, T., Salvador, A., Baixauli, R., & Fiszman, S. M. (2009). Evaluation of four types of resistant starch in muffins. II. Effects in texture, colour and consumer response. European Food Research and Technology, 229(2), 197-204. doi:10.1007/s00217-009-1040-1Taylor, J. R. N., Schober, T. J., & Bean, S. R. (2006). Novel food and non-food uses for sorghum and millets. Journal of Cereal Science, 44(3), 252-271. doi:10.1016/j.jcs.2006.06.009Wilderjans, E., Luyts, A., Brijs, K., & Delcour, J. A. (2013). Ingredient functionality in batter type cake making. Trends in Food Science & Technology, 30(1), 6-15. doi:10.1016/j.tifs.2013.01.001Wilderjans, E., Pareyt, B., Goesaert, H., Brijs, K., & Delcour, J. A. (2008). The role of gluten in a pound cake system: A model approach based on gluten–starch blends. Food Chemistry, 110(4), 909-915. doi:10.1016/j.foodchem.2008.02.079Wilson, N. L. W. (2011). How the Cookie Crumbles: A Case Study of Gluten-Free Cookies and Random Utility. American Journal of Agricultural Economics, 94(2), 576-582. doi:10.1093/ajae/aar081Zhu, J.-H., Yang, X.-Q., Ahmad, I., Li, L., Wang, X.-Y., & Liu, C. (2008). Rheological properties of κ-carrageenan and soybean glycinin mixed gels. Food Research International, 41(3), 219-228. doi:10.1016/j.foodres.2007.11.00

    Comparison of vacuum treatments and traditional cooking in vegetables using instrumental and sensory analysis

    Full text link
    Los objetivos de la presente tesis fueron comparar el efecto de tres técnicas de cocción en varios vegetales y su selección para cada producto estudiado. Para ello, los trabajos realizados han considerado los cambios en las propiedades físico-químicas, nutricionales, sensoriales y la microestructura. Asimismo, como respuesta al reto de aplicar tratamientos equivalentes en firmeza con diferentes técnicas de cocción se ha propuesto una metodología que combina los diseños experimentales de superficie respuesta (RSM) con análisis instrumentales y sensoriales. Los tratamientos térmicos estudiados fueron la cocción tradicional (TC¿ agua hirviendo a 100 °C) junto con dos tratamientos que utilizan el vacío en el procesado: el cook-vide (CV¿ cocción a vacío continuo donde los alimentos están en contacto con agua hirviendo a baja presión) y el sous-vide (SV¿ cocción de alimentos previamente embolsados a vacío donde el alimento está separado del agua de cocción). Los vegetales objeto de estudio fueron la patata morada (Solanum tuberosum L. var. Vitelotte), la judía verde (Phaseolus vulgaris L. cv. Estefania), la zanahoria (Daucus carota L. cv. Nantesa) y la col lombarda (o repollo colorado) (Brassica oleracea convar. capitata var. capitata f. rubra). Considerando muestras con firmeza instrumental similar y las propiedades nutricionales y sensoriales (especialmente aroma y sabor), incluyendo la aceptación del consumidor, se recomienda la cocción SV para los vegetales estudiados, excepto para la zanahoria. En el caso de este vegetal el cocinado tradicional (100 °C) mantiene la aceptabilidad del consumidor y aumenta la extracción de los ß-carotenos por lo que se considera más recomendable que el SV.Iborra Bernad, MDC. (2013). Comparison of vacuum treatments and traditional cooking in vegetables using instrumental and sensory analysis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/32953TESI

    Optimizing the texture and color of sous-vide and cook-vide green bean pods

    Full text link
    Changes in color and texture of green bean pods (Phaseolus vulgaris L. cv. Estefania) as a function of temperature and time of cooking were studied for various techniques where the vacuum is applied in different ways: cook-vide and sous-vide. A central composite rotatable design was used to establish the best conditions to provide maximum greenness (a* very negative) and minimum firmness for both cooking methods using a range of firmness measured with puncture test. A significant regression model was found to describe the color changes ( a*, greenness) and texture (puncture test and Kramer cell test) with regard to the factors time (in the range of 13.8e56.21 min) and temperature (in the range of 77.9 e92.1 C). The optimum value for cooking temperature was 92 C for both treatments. The best cooking times were 28 and 14 min for 1 and 7 days of storage by sous-vide treatment, respectively. The optimal cooking times were 22 and 19 min for 1 and 7 days of storage by cook-vide treatment, respectively. Sensory tests were conducted with 84 consumers. Results show that sous-vide treatment is better preferred than cook-vide and traditional cooking.Author Iborra-Bernad was supported by the Generalitat Valenciana under FPI grant.Iborra Bernad, MDC.; Philippon, D.; García Segovia, P.; Martínez Monzó, J. (2013). Optimizing the texture and color of sous-vide and cook-vide green bean pods. LWT - Food Science and Technology. 51(2):507-513. doi:10.1016/j.lwt.2012.12.001S50751351

    Effect of Konjac Glucomannan (KGM) and Carboxymethylcellulose (CMC) on some Physico-Chemical and Mechanical Properties of Restructured Gilthead Sea Bream (Sparus aurata) Products

    Full text link
    The development of restructured fish products and the application of new food ingredients have been used to create attractive new products and also to upgrade low-value species. The aim of this study was to evaluate the effect of konjac gum (KGM) and carboxymethylcellulose (CMC) fibres on the mechanical and physico-chemical properties of microbial transglutaminase treated restructured fish products from gilthead sea bream as well as to evaluate the effect of heat treatment and storage time. Water holding capacity, mechanical properties and colour attributes in fresh and heat-treated samples after 15 days of cold storage were measured. Results showed that these edible gums could be appropriate for making restructured products obtained from gilthead sea bream. In fresh formulations the addition of 10 gkg&#8722;1 of KGM or 10 gkg&#8722;1 of CMC presented a significant effect (p¡Ü0.05) on water activity for fresh samples and the lowest value was obtained for 10 gkg&#8722;1 of KGM (0.975¡À0.002). Water holding capacity and adhesiveness increased due to the presence of these gums in fresh and heat-treated samples. For heattreated samples, KGM significantly reduced (p<0.05) hardness, cohesiveness and chewiness. Cryo-scanning electron microscopy revealed different structures for gels containing fibres. The use of these fibres did not induce significant changes in colour parameters. Fresh or heattreated samples stored for 15 days at 4¡ãC showed changes in relation to the parameters investigated.The authors would like to acknowledge the support of the INNOVA programme of the Polytechnic University of Valencia in the financing of this study. Author Andres-Bello was supported by the Polytechnic University of Valencia under a grant. Author Iborra-Bernad was supported by La Caixa under a grant.Andrés Bello, MD.; Iborra Bernad, MDC.; García-Segovia, P.; Martínez Monzó, J. (2013). Effect of Konjac Glucomannan (KGM) and Carboxymethylcellulose (CMC) on some Physico-Chemical and Mechanical Properties of Restructured Gilthead Sea Bream (Sparus aurata) Products. Food and Bioprocess Technology. 6(1):133-145. doi:10.1007/s11947-011-0765-6S13314561AENOR (1999). Microbiological standards recopilation of food and assimilated and other physical-chemical parameters of health. Enumeration of microorganisms by colony-count technique at 30 degree celsius. Routine method NF V 08-051.Ahmad, A., Anjum, F. M., Zahoor, T., Nawaz, H., & Din, A. (2009). Physicochemical and functional properties of barley β-glucan as affected by different extraction procedures. International Journal of Food Science and Technology, 44(1), 181–187.Aleson-Carbonell, L., Fernández-López, J., Pérez-Álvarez, J. A., & Kuri, V. (2005). Functional and sensory effects of fibre-rich ingredients on breakfast fresh sausages manufacture. Food Science and Technology International, 11(2), 89–97.Alvarez, C., Couso, I., & Tejada, M. (1999). Microstructure of suwari and kamaboko sardine surimi gels. Journal of the Science of Food and Agriculture, 79(6), 839.AOAC International, Cunniff P. (1995). Official methods of analysis of AOAC International (16th ed.). Arlington: AOAC.Aranceta, J., Serra-Majem, L., Pérez-Rodrigo, C., Ribas-Barba, L., & Delgado-Rubio, A. (2006). Nutrition risk in the child and adolescent population of the Basque country: the enKid Study. The British Journal of Nutrition, 96, S58–S66.Aranceta, J., Pérez, C., Dalmau, J., Gil, A., Lama, R., Martín, M., Martínez, V., Pavón, P., & Suárez, L. (2008). El comedor escolar: situación actual y guía de recomendaciones. Anales de Pediatría, 69(1), 72–88.Arvill, A., & Bodin, L. (1995). Effect of short-term ingestion of konjac glucomannan on serum choresterol in healthy men. The Journal of Clinical Nutrition, 61(3), 585–589.Barbut, S., & Mittal, G. S. (1996). Effects of three cellulose gums on the texture profile and sensory properties of low fat frankfurters. International Journal of Food Science and Technology, 31(3), 241–247.Borderías, A. J., Sánchez-Alonso, I., & Pérez-Mateos, M. (2005). New applications of fibres in foods: addition to fishery products. Trends in Food Science and Technology, 16(10), 458.Bourne, M. C. (1978). Texture profile analysis. Food Technology, 7, 62–66.Cardoso, C., Mendes, R., & Nunes, M. (2007). Effect of transglutaminase and carrageenan on restructured fish products containing dietary fibres. International Journal of Food Science and Technology, 42, 1257–1264.Cardoso, C., Mendes, R., Vaz-Pires, P., & Nunes, M. N. (2009). Effect of dietary fibre and MTGase on the quality of mackerel surimi gels. Journal of the Science of Food and Agriculture, 89(10), 1648–1658.Chattong, U., Apichartsrangkoon, A., & Bell, A. (2007). Effects of hydrocolloid addition and high pressure processing on the rheological properties and microstructure of a commercial ostrich meat product “Yor” (Thai sausage). Meat Science, 76(3), 548–554.Chua, M., Baldwin, T. C., Hocking, T. J., & Chan, K. (2010). Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. Journal of Ethnopharmacology, 128(2), 268–278.Colloca, F., Cerasi, S., & FAO (2009). Fisheries and Aquaculture Department. Programa de información de especies acuáticas, (August/6).Díez-Gañán, L., Galán, I., León, C. M., Gandarillas, A., Zorrilla, B., & Alcaraz, F. (2007). Ingesta de alimentos, energía y nutrientes en la población de 5 a 12 años de la Comunidad de Madrid: resultados de la encuesta de nutrición infantil 2001–2002. Revista Española de Salud Pública, 81(5), 543–558.Emerton, V., & Choi, E. (2008). Essential guide to food additives (3rd ed., p. 336). Leatherhead, Surrey, Cambridge: Leatherhead; Royal Society of Chemistry.Ferry, J. (1948). Protein gels. In M. Anson, Edsall J. T. (Eds.), Advances in protein chemistry (pp. 1–78). Academic.FROM. Ministerio de Medio Ambiente, Medio Rural y Marino (2006). Estudio: El consumo de pescado en comedores escolares. Available at: http://www from mapa es/docs/estudios/52_escolares2006 pdf, Accessed 22 Jul 2008 (22 Jul 2008).Han, M., Zhang, Y., Fei, Y., Xu, X., & Zhou, G. (2009). Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel. European Food Research and Technology, 228(4), 665–670.Hwang, J. S. (2007). Changes in textural and rheological properties of gels from tilapia muscle proteins induced by high pressure and setting [electronic resource]. Food Chemistry, 104, 746–753.Jianu, C., Cocan, I., Rujescu, C., Rinovetz, A., Bujancă, G., & Jianu, I. (2008). Quantitative colourimetric assessments of carboximethylcellulose in anionic and anionic-ionic food recipes. Journal of Agroalimentary Processes and Technologies, 14(2), 394–400.Lee, C. M., Whu, M. C., & Okada, M. (1992). Ingredient and formulation technology for surimi-based products. In T. C. Lanier & C. M. Lee (Eds.), Surimi technology (pp. 273–302). New York: Marcel Dekker.Luna, L., Universidad de Cantabria. Grupo de Investigación en Acuicultura (2007). El mercado de la dorada y la lubina en la Unión Europea: periodo 2006–2009: Estudio. (pp. 182). Ministerio de Agricultura, Pesca y Alimentación, Centro de Publicaciones, Madrid.Martínez, J. R., & Polanco, I. (2007). El libro blanco de la alimentación escolar. Madrid: McGraw-Hill.Montero, P., Hurtado, J. L., & Pérez-Mateos, M. (2000). Microstructural behaviour and gelling characteristics of myosystem protein gels interacting with hydrocolloids. Food Hydrocolloids, 14(5), 455–461.Moreno, H. M., Carballo, J., & Borderías, J. (2008). Influence of alginate and microbial transglutaminase as binding ingredients on restructured fish muscle processed at low temperature. Journal of the Science of Food and Agriculture, 88(9), 1529–1536.Moreno, H. M., Borderías, A. J., & Baron, C. P. (2010). Evaluation of some physico-chemical properties of restructured trout and hake mince during cold gelation and chilled storage [electronic resource]. Food Chemistry, 120(2), 410–417.National Research Council. (1981). Food chemicals codex (3rd ed., p. 735). Washington: National Academy Press.Okada, M. (1974). Elasticity of kamaboko and its strengthening. In M. Okada, M. Yokozeki, & T. Kinumaki (Eds.), Fish paste products (pp. 180–202). Tokyo: Koseisha Koseikaku.Park, J. W. (1996). Temperature-tolerant fish protein gels using konjac flour. Journal of Muscle Foods, 7(2), 165–174.Park, J. W., & Morrissey, M. T. (2005). Ingredient technology for Surimi and Surimi seafood. In J. W. Park (Ed.), Surimi and surimi seafood (1st ed., pp. 649–702). New York: Marcel Dekker.Pérez-Mateos, M., & Montero, P. (2000). Contribution of hydrocolloids to gelling properties of blue whiting muscle. European Food Research and Technology, 210(6), 383.Pokorný, J., & Kolakowska, A. (2003). Lipid-protein and lipid-saccharide interactions. In Sikorski, Z. E., & Kolakowska, A. (Eds.), Chemical and functional properties of food lipids (pp. 345–362). CRC.Puupponen-Pimïa, R., Aura, A. M., Oksman-Caldentey, K. M., Myllärinen, P., Saarela, M., Mattila-Sandholm, T., & Poutanen, K. (2002). Development of functional ingredients for gut health. Trends in Food Science and Technology, 13, 3–11.Regenstein, J. M. (1989). Are comminuted meat products emulsions or gel matrix? In J. E. Kinsella & W. G. Soucie (Eds.), Food proteins (pp. 178–184). Champaign: American Oil Chemist’s Society.Sánchez, I., Pérez-Mateos, M., & Borderías, J. (2004). Incorporación de fibra dietética a reestructurados: una posibilidad. CTC Alimentación, 19, 10–12.Sánchez-Alonso, I., Haji-Maleki, R., & Borderías, A. J. (2006). Effect of wheat fibre in frozen stored fish muscular gels. European Food Research and Technology, 223(4), 571–576.Sánchez-Alonso, I., Solas, M. T., & Borderías, A. J. (2007). Technological implications of addition of wheat dietary fibre to giant squid (Dosidicus gigas) surimi gels. Journal of Food Engineering, 81(2), 404–411.Schneeman, B. O. (2001). Dietary fibre and gastrointestinal function. In B. V. McCleary & L. Prosky (Eds.), Advanced dietary fiber technology (pp. 168–176). Oxford: Blackwell.Serra, L., Aranceta, J., Ribas, L., Pérez, C., Saavedra, P., & Peña, L. (2003). Obesidad infantil y juvenil en España. Resultados del Estudio enKid (1998–2000). Medicina clínica, 121(19), 725–732.Shimizu, Y., Simidu, W., & Ikeuchi, T. (1954). Studies on jelly strength of kamaboko III. Influence of pH on jelly strength. Bull Jap Society Science Fish, 20, 209–212.Tudorica, C. M. (2002). Nutritional and physicochemical characteristics of dietary fiber enriched pasta. Journal of Agricultural and Food Chemistry, 50(2), 347–356.Xiong, G., Cheng, W., Ye, L., Du, X., Zhou, M., Lin, R., Geng, S., Chen, M., Corke, H., & Cai, Y. (2009). Effects of konjac glucomannan on physicochemical properties of myofibrillar protein and surimi gels from grass carp (Ctenopharyngodon idella) [electronic resource]. Food Chemistry, 116(2), 413–418.Yoon, K. S., & Lee, C. M. (1990). Effect of powered cellulose on the texture and freeze–thaw stability of surimi-based shellfish analog products. Journal of Food Science, 55(1), 87–91.Zayas, J. F. (1997). Functionality of proteins in food (p. 373). Berlin: Springer
    corecore