962 research outputs found

    Langevin theory of absorbing phase transitions with a conserved magnitude

    Full text link
    The recently proposed Langevin equation, aimed to capture the relevant critical features of stochastic sandpiles, and other self-organizing systems is studied numerically. This equation is similar to the Reggeon field theory, describing generic systems with absorbing states, but it is coupled linearly to a second conserved and static (non-diffusive) field. It has been claimed to represent a new universality class, including different discrete models: the Manna as well as other sandpiles, reaction-diffusion systems, etc. In order to integrate the equation, and surpass the difficulties associated with its singular noise, we follow a numerical technique introduced by Dickman. Our results coincide remarkably well with those of discrete models claimed to belong to this universality class, in one, two, and three dimensions. This provides a strong backing for the Langevin theory of stochastic sandpiles, and to the very existence of this new, yet meagerly understood, universality class.Comment: 4 pages, 3 eps figs, submitted to PR

    Multiplicative noise: A mechanism leading to nonextensive statistical mechanics

    Full text link
    A large variety of microscopic or mesoscopic models lead to generic results that accommodate naturally within Boltzmann-Gibbs statistical mechanics (based on S1kdup(u)lnp(u)S_1\equiv -k \int du p(u) \ln p(u)). Similarly, other classes of models point toward nonextensive statistical mechanics (based on Sqk[1du[p(u)]q]/[q1]S_q \equiv k [1-\int du [p(u)]^q]/[q-1], where the value of the entropic index qq\in\Re depends on the specific model). We show here a family of models, with multiplicative noise, which belongs to the nonextensive class. More specifically, we consider Langevin equations of the type u˙=f(u)+g(u)ξ(t)+η(t)\dot{u}=f(u)+g(u)\xi(t)+\eta(t), where ξ(t)\xi(t) and η(t)\eta(t) are independent zero-mean Gaussian white noises with respective amplitudes MM and AA. This leads to the Fokker-Planck equation tP(u,t)=u[f(u)P(u,t)]+Mu{g(u)u[g(u)P(u,t)]}+AuuP(u,t)\partial_t P(u,t) = -\partial_u[f(u) P(u,t)] + M\partial_u\{g(u)\partial_u[g(u)P(u,t)]\} + A\partial_{uu}P(u,t). Whenever the deterministic drift is proportional to the noise induced one, i.e., f(u)=τg(u)g(u)f(u) =-\tau g(u) g'(u), the stationary solution is shown to be P(u,){1(1q)β[g(u)]2}11qP(u, \infty) \propto \bigl\{1-(1-q) \beta [g(u)]^2 \bigr\}^{\frac{1}{1-q}} (with qτ+3Mτ+Mq \equiv \frac{\tau + 3M}{\tau+M} and β=τ+M2A\beta=\frac{\tau+M}{2A}). This distribution is precisely the one optimizing SqS_q with the constraint q{du[g(u)]2[P(u)]q}/{du[P(u)]q}=_q \equiv \{\int du [g(u)]^2[P(u)]^q \}/ \{\int du [P(u)]^q \}= constant. We also introduce and discuss various characterizations of the width of the distributions.Comment: 3 PS figure

    Some Open Points in Nonextensive Statistical Mechanics

    Full text link
    We present and discuss a list of some interesting points that are currently open in nonextensive statistical mechanics. Their analytical, numerical, experimental or observational advancement would naturally be very welcome.Comment: 30 pages including 6 figures. Invited paper to appear in the International Journal of Bifurcation and Chao

    Density Matrix Renormalization Group Study of the Haldane Phase in Random One-Dimensional Antiferromagnets

    Get PDF
    It is conjectured that the Haldane phase of the S=1 antiferromagnetic Heisenberg chain and the S=1/2S=1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain is stable against any strength of randomness, because of imposed breakdown of translational symmetry. This conjecture is confirmed by the density matrix renormalization group calculation of the string order parameter and the energy gap distribution.Comment: 4 Pages, 7 figures; Considerable revisions are made in abstract and main text. Final accepted versio

    Nonadditive entropy and nonextensive statistical mechanics - Some central concepts and recent applications

    Full text link
    We briefly review central concepts concerning nonextensive statistical mechanics, based on the nonadditive entropy Sq=k1ipiqq1(qR;S1=kipilnpi)S_q=k\frac{1-\sum_{i}p_i^q}{q-1} (q \in {\cal R}; S_1=-k\sum_{i}p_i \ln p_i). Among others, we focus on possible realizations of the qq-generalized Central Limit Theorem, including at the edge of chaos of the logistic map, and for quasi-stationary states of many-body long-range-interacting Hamiltonian systems.Comment: 15 pages, 9 figs., to appear in Journal of Physics: Conf.Series (IOP, 2010

    From second to first order transitions in a disordered quantum magnet

    Full text link
    We study the spin-glass transition in a disordered quantum model. There is a region in the phase diagram where quantum effects are small and the phase transition is second order, as in the classical case. In another region, quantum fluctuations drive the transition first order. Across the first order line the susceptibility is discontinuous and shows hysteresis. Our findings reproduce qualitatively observations on LiHox_xY1x_{1-x}F4_4. We also discuss a marginally stable spin-glass state and derive some results previously obtained from the real-time dynamics of the model coupled to a bath.Comment: 4 pages, 3 figures, RevTe

    Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions

    Full text link
    We consider the d=1d=1 nonlinear Fokker-Planck-like equation with fractional derivatives tP(x,t)=Dγxγ[P(x,t)]ν\frac{\partial}{\partial t}P(x,t)=D \frac{\partial^{\gamma}}{\partial x^{\gamma}}[P(x,t) ]^{\nu}. Exact time-dependent solutions are found for ν=2γ1+γ \nu = \frac{2-\gamma}{1+ \gamma} (<γ2-\infty<\gamma \leq 2). By considering the long-distance {\it asymptotic} behavior of these solutions, a connection is established, namely q=γ+3γ+1q=\frac{\gamma+3}{\gamma+1} (0<γ20<\gamma \le 2), with the solutions optimizing the nonextensive entropy characterized by index qq . Interestingly enough, this relation coincides with the one already known for L\'evy-like superdiffusion (i.e., ν=1\nu=1 and 0<γ20<\gamma \le 2). Finally, for (γ,ν)=(2,0)(\gamma,\nu)=(2, 0) we obtain q=5/3q=5/3 which differs from the value q=2q=2 corresponding to the γ=2\gamma=2 solutions available in the literature (ν<1\nu<1 porous medium equation), thus exhibiting nonuniform convergence.Comment: 3 figure

    A computational analysis of lower bounds for big bucket production planning problems

    Get PDF
    In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to our knowledge, have not been presented before. As will be highlighted, understanding the substructures of difficult problems provide crucial insights on why these problems are hard to solve, and this is addressed by a thorough analysis in the paper. We conclude with computational results on a variety of widely used test sets, and a discussion of future research
    corecore