10 research outputs found
Magnetic Nanomaterials for Hyperthermia-Based Therapy, Imaging, and Drug Delivery
In recent years, nanomedicine has experienced remarkable advancements, due to the development of new nanomaterials with outstanding properties that have demonstrated significant advantages over traditional medicines [...
Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field
The collective organization of magnetic nanoparticles (MNPs) influences significantly their hyperthermic properties, relevant for their in vitro and in vivo applications. We report a systematic investigation of the effects of the concentration and the static bias direct current (DC) magnetic field superposed over the alternating magnetic field (AMF), both in a parallel and perpendicular configuration, on the specific absorption rate (SAR) by using zinc ferrite MNPs. The nonmonotonic dependence of the SAR on the concentration, with a maximum at very small concentrations (c ≤ 0.1 mgFe/mL), followed by a minimum at 0.25 mgFe/mL, and the second maximum of 3.3 kW/gFe at around 1 mgFe/mL, was explained by the passage of the MNPs from a single particle behavior to a collective one and the role of the dipolar interactions. By superposing a static 10 kA/m bias DC field on the AMF we obtained an increase in the SAR for both parallel and perpendicular orientations, up to 4285 W/gFe and 4070 W/gFe, respectively. To the best of our knowledge, this is the first experimental proof of a significant enhancement of the SAR produced by a perpendicular DC field. The effect of the DC field to increase the SAR is accompanied by an increase in the hyperthermia coercive field (HcHyp) for both configurations. No enhancement of the DC fields was noticed for the MNPs immobilized in a solid matrix but the DC field increases the HcHyp only in the parallel configuration. This translates into a higher SAR value for the perpendicular configuration as compared to the parallel configuration. These results have practical applications for magnetic hyperthermia
Doxorubicin Loaded Thermosensitive Magneto-Liposomes Obtained by a Gel Hydration Technique: Characterization and In Vitro Magneto-Chemotherapeutic Effect Assessment
The combination of magnetic hyperthermia with chemotherapy is considered a promising strategy in cancer therapy due to the synergy between the high temperatures and the chemotherapeutic effects, which can be further developed for targeted and remote-controlled drug release. In this paper we report a simple, rapid, and reproducible method for the preparation of thermosensitive magnetoliposomes (TsMLs) loaded with doxorubicin (DOX), consisting of a lipidic gel formation from a previously obtained water-in-oil microemulsion with fine aqueous droplets containing magnetic nanoparticles (MNPs) dispersed in an organic solution of thermosensitive lipids (transition temperature of ~43 °C), followed by the gel hydration with an aqueous solution of DOX. The obtained thermosensitive magnetoliposomes (TsMLs) were around 300 nm in diameter and exhibited 40% DOX incorporation efficiency. The most suitable MNPs to incorporate into the liposomal aqueous lumen were Zn ferrites, with a very low coercive field at 300 K (7 kA/m) close to the superparamagnetic regime, exhibiting a maximum absorption rate (SAR) of 1130 W/gFe when dispersed in water and 635 W/gFe when confined inside TsMLs. No toxicity of Zn ferrite MNPs or of TsMLs was noticed against the A459 cancer cell line after 48 h incubation over the tested concentration range. The passive release of DOX from the TsMLs after 48h incubation induced a toxicity starting with a dosage level of 62.5 ug/cm2. Below this threshold, the subsequent exposure to an alternating magnetic field (20–30 kA/m, 355 kHz) for 30 min drastically reduced the viability of the A459 cells due to the release of incorporated DOX. Our results strongly suggest that TsMLs represent a viable strategy for anticancer therapies using the magnetic field-controlled release of DOX
The Effect of Zn-Substitution on the Morphological, Magnetic, Cytotoxic, and In Vitro Hyperthermia Properties of Polyhedral Ferrite Magnetic Nanoparticles
The clinical translation of magnetic hyperthermia (MH) needs magnetic nanoparticles (MNPs) with enhanced heating properties and good biocompatibility. Many studies were devoted lately to the increase in the heating power of iron oxide MNPs by doping the magnetite structure with divalent cations. A series of MNPs with variable Zn/Fe molar ratios (between 1/10 and 1/1) were synthesized by using a high-temperature polyol method, and their physical properties were studied with different techniques (Transmission Electron Microscopy, X-ray diffraction, Fourier Transform Infrared Spectroscopy). At low Zn doping (Zn/Fe ratio 1/10), a significant increase in the saturation magnetization (90 e.m.u./g as compared to 83 e.m.u./g for their undoped counterparts) was obtained. The MNPs’ hyperthermia properties were assessed in alternating magnetic fields up to 65 kA/m at a frequency of 355 kHz, revealing specific absorption rates of up to 820 W/g. The Zn ferrite MNPs showed good biocompatibility against two cell lines (A549 cancer cell line and BJ normal cell line) with a drop of only 40% in the viability at the highest dose used (500 μg/cm2). Cellular uptake experiments revealed that the MNPs enter the cells in a dose-dependent manner with an almost 50% higher capacity of cancer cells to accommodate the MNPs. In vitro hyperthermia data performed on both cell lines indicate that the cancer cells are more sensitive to MH treatment with a 90% drop in viability after 30 min of MH treatment at 30 kA/m for a dose of 250 μg/cm2. Overall, our data indicate that Zn doping of iron oxide MNPs could be a reliable method to increase their hyperthermia efficiency in cancer cells
Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties
Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe3O4-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by means of X-ray diffraction, transmission electron microscopy and vibration sample magnetometry. Hyperthermia measurements showed that Specific Absorption Rate (SAR) dependence on the external alternating magnetic field amplitude (up to 65 kA/m, 355 kHz) presented a sigmoidal shape, with remarkable SAR saturation values of ~1400 W/gMNP for the small monocrystalline MNPs and only 400 W/gMNP for the large polycrystalline MNPs, in water. SAR values were slightly reduced in cell culture media, but decreased one order of magnitude in highly viscous PEG1000. Toxicity assays performed on four cell lines revealed almost no toxicity for the small MNPs and a very small level of toxicity for the large MNPs, up to a concentration of 0.2 mg/mL. Cellular uptake experiments revealed that both MNPs penetrated the cells through endocytosis, in a time dependent manner and escaped the endosomes with a faster kinetics for large MNPs. Biodegradation of large MNPs inside cells involved an all-or-nothing mechanism
Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in ZnxFe3−xO4 Nanoparticles
International audienceSuperparamagnetic ZnxFe3−xO4 magnetic nanoparticles (0 ≤ x < 0.5) with spherical shapes of 16 nm average diameter and different zinc doping level have been successfully synthesized by co-precipitation method. The homogeneous zinc substitution of iron cations into the magnetite crystalline structure has led to an increase in the saturation magnetization of nanoparticles up to 120 Am2/kg for x ~ 0.3. The specific absorption rate (SAR) values increased considerably when x is varied between 0 and 0.3 and then decreased for x ~ 0.5. The SAR values are reduced upon the immobilization of the nanoparticles in a solid matrix being significantly increased by a pre-alignment step in a uniform static magnetic field before immobilization. The SAR values displayed a quadratic dependence on the alternating magnetic field amplitude (H) up to 35 kA/m. Above this value, a clear saturation effect of SAR was observed that was successfully described qualitatively and quantitatively by considering the non-linear field’s effects and the magnetic field dependence of both Brown and Neel relaxation times. The Neel relaxation time depends more steeply on H as compared with the Brown relaxation time, and the magnetization relaxation might be dominated by the Neel mechanism, even for nanoparticles with large diameter
Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process
Manganese and zinc ferrite magnetic nanoparticles (MNPs) were successfully synthesizedusing the polyol method in ethylene glycol and were found to have high saturation magnetizationvalues (90–95 emu/g at 4 K) when formed by ~30-nm crystallites assembled in an ~80-nm multicorestructure. Hyperthermia data revealed a sigmoidal dependence of the specific absorption rate (SAR)on the alternating magnetic field (AMF) amplitude, with remarkable saturation SAR values in waterof ~1200 W/gFe+Mn and ~800 W/gFe+Zn for the Mn and Zn ferrites, respectively. The immobilizationof the MNPs in a solid matrix reduced the maximum SAR values by ~300 W/gFe+Mn, Zn for bothferrites. The alignment of the MNPs in a uniform static magnetic field, before their immobilizationin a solid matrix, significantly increased their heating performance. Toxicity assays performed infour cell lines revealed a lower toxicity for the Mn ferrites, while in the case of the Zn ferrites, only~50% of cells were viable upon their incubation for 24 h with 0.2 mg/mL of MNPs. Cellular uptakeexperiments revealed that both MNPs entered the cells in a time-dependent manner, as they werefound initially in endosomes and later in the cytosol. All of the studied cell lines were more sensitiveto the ZnFe2O4 MNPs
In Vitro Intracellular Hyperthermia of Iron Oxide Magnetic Nanoparticles, Synthesized at High Temperature by a Polyol Process
We report the synthesis of magnetite nanoparticles (IOMNPs) using the polyol method performed at elevated temperature (300 °C) and high pressure. The ferromagnetic polyhedral IOMNPs exhibited high saturation magnetizations at room temperature (83 emu/g) and a maximum specific absorption rate (SAR) of 2400 W/gFe in water. The uniform dispersion of IOMNPs in solid matrix led to a monotonous increase of SAR maximum (3600 W/gFe) as the concentration decreased. Cytotoxicity studies on two cell lines (cancer and normal) using Alamar Blues and Neutral Red assays revealed insignificant toxicity of the IOMNPs on the cells up to a concentration of 1000 μg/mL. The cells internalized the IOMNPs inside lysosomes in a dose-dependent manner, with higher amounts of IOMNPs in cancer cells. Intracellular hyperthermia experiments revealed a significant increase in the macroscopic temperatures of the IOMNPs loaded cell suspensions, which depend on the amount of internalized IOMNPs and the alternating magnetic field amplitude. The cancer cells were found to be more sensitive to the intracellular hyperthermia compared to the normal ones. For both cell lines, cells heated at the same macroscopic temperature presented lower viability at higher amplitudes of the alternating magnetic field, indicating the occurrence of mechanical or nanoscale heating effects
Silica Coating of Ferromagnetic Iron Oxide Magnetic Nanoparticles Significantly Enhances Their Hyperthermia Performances for Efficiently Inducing Cancer Cells Death In Vitro
Increasing the biocompatibility, cellular uptake, and magnetic heating performance of ferromagnetic iron-oxide magnetic nanoparticles (F-MNPs) is clearly required to efficiently induce apoptosis of cancer cells by magnetic hyperthermia (MH). Thus, F-MNPs were coated with silica layers of different thicknesses via a reverse microemulsion method, and their morphological, structural, and magnetic properties were evaluated by multiple techniques. The presence of a SiO2 layer significantly increased the colloidal stability of F-MNPs, which also enhanced their heating performance in water with almost 1000 W/gFe as compared to bare F-MNPs. The silica-coated F-MNPs exhibited biocompatibility of up to 250 μg/cm2 as assessed by Alamar Blues and Neutral Red assays on two cancer cell lines and one normal cell line. The cancer cells were found to internalize a higher quantity of silica-coated F-MNPs, in large endosomes, dispersed in the cytoplasm or inside lysosomes, and hence were more sensitive to in vitro MH treatment compared to the normal ones. Cellular death of more than 50% of the malignant cells was reached starting at a dose of 31.25 μg/cm2 and an amplitude of alternating magnetic field of 30 kA/m at 355 kHz
Solid Plasmonic Substrates for Breast Cancer Detection by Means of SERS Analysis of Blood Plasma
Surface enhanced Raman spectroscopy (SERS) represents a promising technique in providing specific molecular information that could have a major impact in biomedical applications, such as early cancer detection. SERS requires the presence of a suitable plasmonic substrate that can generate enhanced and reproducible diagnostic relevant spectra. In this paper, we propose a new approach for the synthesis of such a substrate, by using concentrated silver nanoparticles purified using the Tangential Flow Filtration method. The capacity of our substrates to generate reproducible and enhanced Raman signals, in a manner that can allow cancer detection by means of Multivariate Analysis (MVA) of Surface Enhanced Raman (SER) spectra, has been tested on blood plasma samples collected from 35 healthy donors and 29 breast cancer patients. All the spectra were analyzed by a combined Principal Component-Linear Discriminant Analysis. Our results facilitated the discrimination between healthy donors and breast cancer patients with 90% sensitivity, 89% specificity and 89% accuracy. This is a direct consequence of substrates’ ability to generate diagnostic relevant spectral information by performing SERS measurements on pristine blood plasma samples. Our results suggest that this type of solid substrate could be employed for the detection of other types of cancer or other diseases by means of MVA-SERS procedure