4,270 research outputs found

    On the Cauchy problem for a nonlinearly dispersive wave equation

    Full text link
    We establish the local well-posedness for a new nonlinearly dispersive wave equation and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite times. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.Comment: arxiv version is already officia

    Credit assignment in multiple goal embodied visuomotor behavior

    Get PDF
    The intrinsic complexity of the brain can lead one to set aside issues related to its relationships with the body, but the field of embodied cognition emphasizes that understanding brain function at the system level requires one to address the role of the brain-body interface. It has only recently been appreciated that this interface performs huge amounts of computation that does not have to be repeated by the brain, and thus affords the brain great simplifications in its representations. In effect the brain’s abstract states can refer to coded representations of the world created by the body. But even if the brain can communicate with the world through abstractions, the severe speed limitations in its neural circuitry mean that vast amounts of indexing must be performed during development so that appropriate behavioral responses can be rapidly accessed. One way this could happen would be if the brain used a decomposition whereby behavioral primitives could be quickly accessed and combined. This realization motivates our study of independent sensorimotor task solvers, which we call modules, in directing behavior. The issue we focus on herein is how an embodied agent can learn to calibrate such individual visuomotor modules while pursuing multiple goals. The biologically plausible standard for module programming is that of reinforcement given during exploration of the environment. However this formulation contains a substantial issue when sensorimotor modules are used in combination: The credit for their overall performance must be divided amongst them. We show that this problem can be solved and that diverse task combinations are beneficial in learning and not a complication, as usually assumed. Our simulations show that fast algorithms are available that allot credit correctly and are insensitive to measurement noise

    On the particle paths and the stagnation points in small-amplitude deep-water waves

    Full text link
    In order to obtain quite precise information about the shape of the particle paths below small-amplitude gravity waves travelling on irrotational deep water, analytic solutions of the nonlinear differential equation system describing the particle motion are provided. All these solutions are not closed curves. Some particle trajectories are peakon-like, others can be expressed with the aid of the Jacobi elliptic functions or with the aid of the hyperelliptic functions. Remarks on the stagnation points of the small-amplitude irrotational deep-water waves are also made.Comment: to appear in J. Math. Fluid Mech. arXiv admin note: text overlap with arXiv:1106.382

    Steady water waves with multiple critical layers: interior dynamics

    Get PDF
    We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat's-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.Comment: 14 pages, 3 figures. As accepted for publication in J. Math. Fluid Mec

    Particle trajectories in linearized irrotational shallow water flows

    Full text link
    We investigate the particle trajectories in an irrotational shallow water flow over a flat bed as periodic waves propagate on the water's free surface. Within the linear water wave theory, we show that there are no closed orbits for the water particles beneath the irrotational shallow water waves. Depending on the strength of underlying uniform current, we obtain that some particle trajectories are undulating path to the right or to the left, some are looping curves with a drift to the right and others are parabolic curves or curves which have only one loop

    Equations of the Camassa-Holm Hierarchy

    Get PDF
    The squared eigenfunctions of the spectral problem associated with the Camassa-Holm (CH) equation represent a complete basis of functions, which helps to describe the inverse scattering transform for the CH hierarchy as a generalized Fourier transform (GFT). All the fundamental properties of the CH equation, such as the integrals of motion, the description of the equations of the whole hierarchy, and their Hamiltonian structures, can be naturally expressed using the completeness relation and the recursion operator, whose eigenfunctions are the squared solutions. Using the GFT, we explicitly describe some members of the CH hierarchy, including integrable deformations for the CH equation. We also show that solutions of some (1+2)(1+2) - dimensional members of the CH hierarchy can be constructed using results for the inverse scattering transform for the CH equation. We give an example of the peakon solution of one such equation.Comment: 10 page

    A stochastic perturbation of inviscid flows

    Full text link
    We prove existence and regularity of the stochastic flows used in the stochastic Lagrangian formulation of the incompressible Navier-Stokes equations (with periodic boundary conditions), and consequently obtain a \holderspace{k}{\alpha} local existence result for the Navier-Stokes equations. Our estimates are independent of viscosity, allowing us to consider the inviscid limit. We show that as ν→0\nu \to 0, solutions of the stochastic Lagrangian formulation (with periodic boundary conditions) converge to solutions of the Euler equations at the rate of O(νt)O(\sqrt{\nu t}).Comment: 13 pages, no figures

    A stochastic-Lagrangian particle system for the Navier-Stokes equations

    Full text link
    This paper is based on a formulation of the Navier-Stokes equations developed by P. Constantin and the first author (\texttt{arxiv:math.PR/0511067}, to appear), where the velocity field of a viscous incompressible fluid is written as the expected value of a stochastic process. In this paper, we take NN copies of the above process (each based on independent Wiener processes), and replace the expected value with 1N\frac{1}{N} times the sum over these NN copies. (We remark that our formulation requires one to keep track of NN stochastic flows of diffeomorphisms, and not just the motion of NN particles.) We prove that in two dimensions, this system of interacting diffeomorphisms has (time) global solutions with initial data in the space \holderspace{1}{\alpha} which consists of differentiable functions whose first derivative is α\alpha H\"older continuous (see Section \ref{sGexist} for the precise definition). Further, we show that as N→∞N \to \infty the system converges to the solution of Navier-Stokes equations on any finite interval [0,T][0,T]. However for fixed NN, we prove that this system retains roughly O(1N)O(\frac{1}{N}) times its original energy as t→∞t \to \infty. Hence the limit N→∞N \to \infty and T→∞T\to \infty do not commute. For general flows, we only provide a lower bound to this effect. In the special case of shear flows, we compute the behaviour as t→∞t \to \infty explicitly.Comment: v3: Typo fixes, and a few stylistic changes. 17 pages, 2 figure
    • …
    corecore