33 research outputs found

    Suppression of allergic airway inflammation by helminth-induced regulatory T cells

    Get PDF
    Allergic diseases mediated by T helper type (Th) 2 cell immune responses are rising dramatically in most developed countries. Exaggerated Th2 cell reactivity could result, for example, from diminished exposure to Th1 cell–inducing microbial infections. Epidemiological studies, however, indicate that Th2 cell–stimulating helminth parasites may also counteract allergies, possibly by generating regulatory T cells which suppress both Th1 and Th2 arms of immunity. We therefore tested the ability of the Th2 cell–inducing gastrointestinal nematode Heligmosomoides polygyrus to influence experimentally induced airway allergy to ovalbumin and the house dust mite allergen Der p 1. Inflammatory cell infiltrates in the lung were suppressed in infected mice compared with uninfected controls. Suppression was reversed in mice treated with antibodies to CD25. Most notably, suppression was transferable with mesenteric lymph node cells (MLNC) from infected animals to uninfected sensitized mice, demonstrating that the effector phase was targeted. MLNC from infected animals contained elevated numbers of CD4(+)CD25(+)Foxp3(+) T cells, higher TGF-β expression, and produced strong interleukin (IL)-10 responses to parasite antigen. However, MLNC from IL-10–deficient animals transferred suppression to sensitized hosts, indicating that IL-10 is not the primary modulator of the allergic response. Suppression was associated with CD4(+) T cells from MLNC, with the CD4(+)CD25(+) marker defining the most active population. These data support the contention that helminth infections elicit a regulatory T cell population able to down-regulate allergen induced lung pathology in vivo

    Editorial: Recent advances in the immunology of helminth infection – protection, pathogenesis and panaceas

    Get PDF
    [Extract] Helminths (parasitic worms) are a diverse group of organisms that utilize a wide range of species as their intermediate and definitive hosts. The nematodes consist of the whipworms, roundworms, hookworms and filarial worms, and these sit alongside the platyhelminth flatworms (or blood flukes) and tapeworms - all of which have species that cause serious disease in humans. Some species have free living stages, others rely on insect vectors for transmission, while some can reproduce to release live larval stages within their mammalian host. The diversity of infection route, larval migration within the host and the location of the adult parasite have major implications for the pathology and immune responses elicited by each species. Here, we briefly outline the contributions to the Research Topic Recent Advances in the Immunology of Helminth Infection – Protection, Pathogenesis and Panaceas

    CD36 deficiency attenuates experimental mycobacterial infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the CD36 scavenger receptor family have been implicated as sensors of microbial products that mediate phagocytosis and inflammation in response to a broad range of pathogens. We investigated the role of CD36 in host response to mycobacterial infection.</p> <p>Methods</p> <p>Experimental <it>Mycobacterium bovis </it>Bacillus Calmette-Guérin (BCG) infection in <it>Cd36<sup>+/+ </sup></it>and <it>Cd36<sup>-/- </sup></it>mice, and <it>in vitro </it>co-cultivation of <it>M. tuberculosis</it>, BCG and <it>M. marinum </it>with <it>Cd36<sup>+/+ </sup></it>and <it>Cd36<sup>-/-</sup></it>murine macrophages.</p> <p>Results</p> <p>Using an <it>in vivo </it>model of BCG infection in <it>Cd36<sup>+/+ </sup></it>and <it>Cd36<sup>-/- </sup></it>mice, we found that mycobacterial burden in liver and spleen is reduced (83% lower peak splenic colony forming units, p < 0.001), as well as the density of granulomas, and circulating tumor necrosis factor (TNF) levels in <it>Cd36<sup>-/- </sup></it>animals. Intracellular growth of all three mycobacterial species was reduced in <it>Cd36<sup>-/- </sup></it>relative to wild type <it>Cd36<sup>+/+ </sup></it>macrophages <it>in vitro</it>. This difference was not attributable to alterations in mycobacterial uptake, macrophage viability, rate of macrophage apoptosis, production of reactive oxygen and/or nitrogen species, TNF or interleukin-10. Using an <it>in vitro </it>model designed to recapitulate cellular events implicated in mycobacterial infection and dissemination <it>in vivo </it>(i.e., phagocytosis of apoptotic macrophages containing mycobacteria), we demonstrated reduced recovery of viable mycobacteria within <it>Cd36<sup>-/- </sup></it>macrophages.</p> <p>Conclusions</p> <p>Together, these data indicate that CD36 deficiency confers resistance to mycobacterial infection. This observation is best explained by reduced intracellular survival of mycobacteria in the <it>Cd36<sup>-/- </sup></it>macrophage and a role for CD36 in the cellular events involved in granuloma formation that promote early bacterial expansion and dissemination.</p

    C5a Enhances Dysregulated Inflammatory and Angiogenic Responses to Malaria In Vitro: Potential Implications for Placental Malaria

    Get PDF
    Placental malaria (PM) is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs) and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generation of the potent inflammatory peptide C5a, we investigated the role of C5a in the pathogenesis of PM in vitro and in vivo.Using primary human monocytes, the interaction between C5a and malaria in vitro was assessed. CSA- and CD36-binding PEs induced activation of C5 in the presence of human serum. Plasmodium falciparum GPI (pfGPI) enhanced C5a receptor expression (CD88) on monocytes, and the co-incubation of monocytes with C5a and pfGPI resulted in the synergistic induction of cytokines (IL-6, TNF, IL-1beta, and IL-10), chemokines (IL-8, MCP-1, MIP1alpha, MIP1beta) and the anti-angiogenic factor sFlt-1 in a time and dose-dependent manner. This dysregulated response was abrogated by C5a receptor blockade. To assess the potential role of C5a in PM, C5a plasma levels were measured in malaria-exposed primigravid women in western Kenya. Compared to pregnant women without malaria, C5a levels were significantly elevated in women with PM.These results suggest that C5a may contribute to the pathogenesis of PM by inducing dysregulated inflammatory and angiogenic responses that impair placental function

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Immunoregulatory T cell populations during nematode infections

    Get PDF

    How arthropod microbiota could enhance/interfere with the transmission/establishment of VBDs.

    No full text
    <p>In the arthropod cavity, the arthropod microbiota can alter pathogen development, resulting in decreased or increased loads in the vectors and reduced or increased transmission. However, the impact of the pathogens on the microbiota has yet to be assessed. Once transmission has occurred, the host immune system generates a response to destroy the pathogens in the skin. Components from the pathogens themselves and the arthropod saliva are known to actively inhibit this process. The role of the arthropod microbiota, likely transmitted along with the pathogens, on the host immune system is currently unknown (dotted lines).</p

    The origins of apicomplexan sequence innovation

    No full text
    The Apicomplexa are a group of phylogenetically related parasitic protists that include Plasmodium, Cryptosporidium, and Toxoplasma. Together they are a major global burden on human health and economics. To meet this challenge, several international consortia have generated vast amounts of sequence data for many of these parasites. Here, we exploit these data to perform a systematic analysis of protein family and domain incidence across the phylum. A total of 87,736 protein sequences were collected from 15 apicomplexan species. These were compared with three protein databases, including the partial genome database, PartiGeneDB, which increases the breadth of taxonomic coverage. From these searches we constructed taxonomic profiles that reveal the extent of apicomplexan sequence diversity. Sequences without a significant match outside the phylum were denoted as apicomplexan specialized. These were collated into 9134 discrete protein families and placed in the context of the apicomplexan phylogeny, identifying the putative origin of each family. Most apicomplexan families were associated with an individual genus or species. Interestingly, many genera-specific innovations were associated with specialized host cell invasion and/or parasite survival processes. Contrastingly, those families reflecting more ancestral relationships were enriched in generalized housekeeping functions such as translation and transcription, which have diverged within the apicomplexan lineage. Protein domain searches revealed 192 domains not previously reported in apicomplexans together with a number of novel domain combinations. We highlight domains that may be important to parasite survival
    corecore