51 research outputs found

    A synergistic approach for evaluating climate model output for ecological applications

    Get PDF
    Increasing concern about the impacts of climate change on ecosystems is prompting ecologists and ecosystem managers to seek reliable projections of physical drivers of change. The use of global climate models in ecology is growing, although drawing ecologically meaningful conclusions can be problematic. The expertise required to access and interpret output from climate and earth system models is hampering progress in utilizing them most effectively to determine the wider implications of climate change. To address this issue, we present a joint approach between climate scientists and ecologists that explores key challenges and opportunities for progress. As an exemplar, our focus is the Southern Ocean, notable for significant change with global implications, and on sea ice, given its crucial role in this dynamic ecosystem. We combined perspectives to evaluate the representation of sea ice in global climate models. With an emphasis on ecologically-relevant criteria (sea ice extent and seasonality) we selected a subset of eight models that reliably reproduce extant sea ice distributions. While the model subset shows a similar mean change to the full ensemble in sea ice extent (approximately 50% decline in winter and 30% decline in summer), there is a marked reduction in the range. This improved the precision of projected future sea ice distributions by approximately one third, and means they are more amenable to ecological interpretation. We conclude that careful multidisciplinary evaluation of climate models, in conjunction with ongoing modeling advances, should form an integral part of utilizing model output

    The changing form of Antarctic biodiversity

    Get PDF
    Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewher

    Mineral nitrogen dynamics in a fallow grey clay

    No full text

    Intersession Test-Retest Variability of Microperimetry in Type 2 Macular Telangiectasia

    Get PDF
    Purpose: Microperimetry is used as an endpoint in type 2 macular telangiectasia (mactel) trials. The change required for defining disease progression depends on measurement error. We determined the threshold of test-retest variability (TRV) of microperimetry in mactel. Methods: A prospective study was done of 24 patients with stable mactel enrolled in a tertiary eye clinic. Each patient underwent three sessions of microperimetry separated by a median of 28 days. An identical testing protocol was used: 4-2 staircase algorithm at 37 loci radial grid covering central 6°. Microperimetry variables were compared across three visits. TRV was quantified by calculating the coefficients of repeatability (CRs) for mean and median foveal sensitivity and the number of loci with dense scotoma (DS) or normal sensitivity (NS). The 95% confidence intervals (CIs) for CRs were calculated. Results: Mean and median foveal sensitivity increased from first to second testing sessions. Test duration, visual acuity, number of loci with DS, and fixation stability remained stable through the three test sessions. The intersession CRs for mean and median foveal sensitivity were 2.6 (95% CI, 1.8-3.3) and 2.4 (95% CI, 1.7-3.1) dB, respectively. CRs for the number of DS and NS loci were 5 and 12 loci. CR for both logBCEA63 and logBCEA95 was 1.0 (95% CI, 0.8-1.2). Conclusions: The first microperimetry examination should be discarded due to learning effects. TRV in foveal sensitivity may be as high as 3.3 and 3.1 dB (∼0.3 log unit; 2× change) for its mean and median. Translational Relevance: Our results have implications for the design of clinical trials in mactel
    corecore