259 research outputs found

    Telecentric F-theta fisheye lens for space applications

    Get PDF
    A very wide angle lens with a field of view of 360°x180° - a fisheye lens - has been designed to be used in a space environment. As a case study, the lens is assumed to be mounted on a spinning probe passing through a comet’s tail. The lens, rotating with the probe passing through the comet coma, may map the entire sky as viewed from the interior tail, providing unprecedented data on the spatial distribution of plasma and dust. Considering the foreseen space applications for the lens, radiation hardened glass has been taken into account for the design. A key feature of the lens is the “angular scale” uniformity (F-theta) of the sky distribution map projected on the focal plane allowing to obtain a reliable whole sky reconstruction. Care has also been taken to obtain an almost telecentric design, in order to permit filters placed on the focal plane to work properly. A telecentric fisheye operating with a pixel-limited resolution in the waveband from 500 nm up to 770 nm and with an F-theta distortion is presented in this paper

    The fisheye of the comet interceptor's EnVisS camera

    Get PDF
    Entire Visible Sky (EnVisS) camera is one of the payload proposed for the ESA selected F-Class mission Comet Interceptor. The main aim of the mission is the study of a dynamic new comet, or an interstellar object, entering the inner solar system for the first time. The Comet Interceptor mission is conceived to be composed of three spacecraft: a parent spacecraft A and two, spacecraft B1 and B2, dedicated to a close and risky fly-by. EnVisS will be mounted on spacecraft B2, which is foreseen to be spin-stabilized. The EnVisS camera is designed to capture the entire sky in some visible wavelength bands while the spacecraft pass through the comet's coma. EnVisS optical head is composed of a fisheye lens with a field of view of 180° x 40° coupled with an imaging detector equipped with both band-pass and polarimetric filters. The design of fisheye lenses requires to take into account some issues typical of very wide-angle lenses. The fundamental origin of the optical problems resides on the entrance pupil shift at large angle, where the paraxial approximation is no more valid: chief rays angles on the object side are not preserved passing through the optics preceding the aperture stop (fore-optics). This effect produces an anamorphic deformation of the image on the focal plane, i.e. the focal length is changing along the elevation angles. Tracing the rays appropriately requires some effort by the designer. It has to be considered that distortion, including anamorphism, is an aberration that does not affect the quality of a point source image, thus it can be present also in well corrected lenses. In this paper the optical design of the fisheye lens, that will be mounted on the EnVisS camera for the ESA F-class "Comet Interceptor" mission, will be presented together with the initial optical requirements and the final expected optical performances

    New cathepsin V inhibitor from stems of Bowdichia virgilioides

    Get PDF
    Bioassay-guided fractionation of Bowdichia virgilioides Kunth, Fabaceae, extracts has led to the isolation of cathepsin V inhibitors. The investigation of the hexane and ethyl acetate extracts allowed the characterization of eleven compounds: lupeol, lupenone, β-sitosterol and stigmasterol in mixture, trans p-coumaric acid ester derivative, syringaresinol, bowdenol, 8-methoxycoumestrol, 3,4-hydroxy-7-methoxyisoflavone, 7,3′-dihydroxy-4′-methoxyisoflavone, and 5,4′-dihydroxy-7′-methoxyisoflavone. Structures of compounds were stablished by 1D and 2D NMR, and MS experiments. Among the isolated compounds, trans p-coumaric acid ester derivative and 8-methoxycoumestrol showed significant inhibition on cathepsin V, which is up to now unexplored. Keywords: Cathepsin, Cysteine peptidases, Inhibitors, Cerrado biom

    Disease activity and damage in juvenile idiopathic arthritis: Methotrexate era versus biologic era

    Get PDF
    Objective: To compare the long-term disease state, in terms of activity and damage, of children with juvenile idiopathic arthritis (JIA) who had their disease onset in methotrexate (MTX) or biologic eras. Methods: Patients were included in MTX or biologic era cohort depending on whether their disease presentation occurred before or after January 2000. All patients had disease duration 65 5 years and underwent a prospective cross-sectional assessment, which included measurement of disease activity and damage. Inactive disease (ID) and low disease activity (LDA) states were defined according to Wallace, JADAS10, and cJADAS10 criteria. Articular and extraarticular damage was assessed with the Juvenile Arthritis Damage Index (JADI). Results: MTX and biologic era cohorts included 239 and 269 patients, respectively. Patients were divided in the "functional phenotypes" of oligoarthritis and polyarthritis. At cross-sectional visit, patients in the biologic era cohort with either oligoarthritis or polyarthritis had consistently higher frequencies of ID and LDA by all criteria. The measurement of disease damage at cross-sectional visit revealed that the frequency of impairment of > 1 JADI-Articular items was higher in MTX than in biologic era cohort (17.6% versus 11% in oligoarthritis and 52.6% versus 21.8% in polyarthritis). Likewise, frequency of involvement of > 1 JADI-Extraarticular items was higher in the MTX than in the biologic era cohort (26.5% versus 16.2% in oligoarthritis and 31.4% versus 13.5% in polyarthritis). Conclusion: Our study provides evidence of the remarkable outcome improvement obtained with the recent therapeutic advance in JIA

    Validity of a three-variable juvenile arthritis disease activity score in children with new-onset juvenile idiopathic arthritis

    Get PDF
    <p>Objectives To investigate the validity and feasibility of the Juvenile Arthritis Disease Activity Score (JADAS) in the routine clinical setting for all juvenile idiopathic arthritis (JIA) disease categories and explore whether exclusion of the erythrocyte sedimentation rate (ESR) from JADAS (the ‘JADAS3’) influences correlation with single markers of disease activity.</p> <p>Methods JADAS-71, JADAS-27 and JADAS-10 were determined at baseline for an inception cohort of children with JIA in the Childhood Arthritis Prospective Study. JADAS3-71, JADAS3-27 and JADAS3-10 were determined using an identical formula but with exclusion of ESR. Correlation of JADAS with JADAS3 and single measures of disease activity/severity were determined by category.</p> <p>Results Of 956 eligible children, sufficient data were available to calculate JADAS-71, JADAS-27 and JADAS-10 at baseline in 352 (37%) and JADAS3 in 551 (58%). The median (IQR) JADAS-71, JADAS-27 and JADAS-10 for all 352 children was 11 (5.9–18), 10.4 (5.7–17) and 11 (5.9–17.3), respectively. Median JADAS and JADAS3 varied significantly with the category (Kruskal–Wallis p=0.0001), with the highest values in children with polyarticular disease patterns. Correlation of JADAS and JADAS3 across all categories was excellent. Correlation of JADAS71 with single markers of disease activity/severity was good to moderate, with some variation across the categories. With the exception of ESR, correlation of JADAS3-71 was similar to correlation of JADAS-71 with the same indices.</p> <p>Conclusions This study is the first to apply JADAS to all categories of JIA in a routine clinical setting in the UK, adding further information about the feasibility and construct validity of JADAS. For the majority of categories, clinical applicability would be improved by exclusion of the ESR.</p&gt

    The optical head of the EnVisS camera for the Comet Interceptor ESA mission: Phase 0 study

    Get PDF
    EnVisS (Entire Visible Sky) is an all-sky camera specifically designed to fly on the space mission Comet Interceptor. This mission has been selected in June 2019 as the first European Space Agency (ESA) Fast mission, a modest size mission with fast implementation. Comet Interceptor aims to study a dynamically new comet, or interstellar object, and its launch is scheduled in 2029 as a companion to the ARIEL mission. The mission study phase, called Phase 0, has been completed in December 2019, and then the Phase A study had started. Phase A will last for about two years until mission adoption expected in June 2022. The Comet Interceptor mission is conceived to be composed of three spacecraft: spacecraft A devoted to remote sensing science, and the other two, spacecraft B1 and B2, dedicated to a fly-by with the comet. EnVisS will be mounted on spacecraft B2, which is foreseen to be spin-stabilized. The camera is developed with the scientific task to image, in push-frame mode, the full comet coma in different colors. A set of ad-hoc selected broadband filters and polarizers in the visible range will be used to study the full scale distribution of the coma gas and dust species. The camera configuration is a fish-eye lens system with a FoV of about 180°x45°. This paper will describe the preliminary EnVisS optical head design and analysis carried out during the Phase 0 study of the mission
    corecore