5,872 research outputs found

    Conceptual design of a 1-MW CW X-band transmitter for planetary radar

    Get PDF
    A proposed conceptual design to increase the output power of an existing X-band radar transmitter used for planetary radar exploration from 365 kW to 1 MW CW is presented. The basic transmitter system requirements as dictated by the specifications for the radar are covered. The characteristics and expected performance of the high-power klystrons are considered, and the transmitter power amplifier system is described. Also included is the design of all of the associated high-power microwave components, the feed system, and the phase-stable exciter. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology needed to meet system requirements is given and possible areas of difficulty are summarized

    A power-saving modulation technique for time-of-flight range imaging sensors

    Get PDF
    Time-of-flight range imaging cameras measure distance and intensity simultaneously for every pixel in an image. With the continued advancement of the technology, a wide variety of new depth sensing applications are emerging; however a number of these potential applications have stringent electrical power constraints that are difficult to meet with the current state-of-the-art systems. Sensor gain modulation contributes a significant proportion of the total image sensor power consumption, and as higher spatial resolution range image sensors operating at higher modulation frequencies (to achieve better measurement precision) are developed, this proportion is likely to increase. The authors have developed a new sensor modulation technique using resonant circuit concepts that is more power efficient than the standard mode of operation. With a proof of principle system, a 93–96% reduction in modulation drive power was demonstrated across a range of modulation frequencies from 1–11 MHz. Finally, an evaluation of the range imaging performance revealed an improvement in measurement linearity in the resonant configuration due primarily to the more sinusoidal shape of the resonant electrical waveforms, while the average precision values were comparable between the standard and resonant operating modes

    Heterodyne range imaging as an alternative to photogrammetry

    Get PDF
    Solid-state full-field range imaging technology, capable of determining the distance to objects in a scene simultaneously for every pixel in an image, has recently achieved sub-millimeter distance measurement precision. With this level of precision, it is becoming practical to use this technology for high precision three-dimensional metrology applications. Compared to photogrammetry, range imaging has the advantages of requiring only one viewing angle, a relatively short measurement time, and simplistic fast data processing. In this paper we fist review the range imaging technology, then describe an experiment comparing both photogrammetric and range imaging measurements of a calibration block with attached retro-reflective targets. The results show that the range imaging approach exhibits errors of approximately 0.5 mm in-plane and almost 5 mm out-of-plane; however, these errors appear to be mostly systematic. We then proceed to examine the physical nature and characteristics of the image ranging technology and discuss the possible causes of these systematic errors. Also discussed is the potential for further system characterization and calibration to compensate for the range determination and other errors, which could possibly lead to three-dimensional measurement precision approaching that of photogrammetry

    The Waikato range imager

    Get PDF
    We are developing a high precision simultaneous full-field acquisition range imager. This device measures range with sub millimetre precision in range simultaneously over a full-field view of the scene. Laser diodes are used to illuminate the scene with amplitude modulation with a frequency of 10MHz up to 100 MHz. The received light is interrupted by a high speed shutter operating in a heterodyne configuration thus producing a low-frequency signal which is sampled with a digital camera. By detecting the phase of the signal at each pixel the range to the scene is determined. We show 3D reconstructions of some viewed objects to demonstrate the capabilities of the ranger

    Self-consistent predictions for LIER-like emission lines from post-AGB stars

    Full text link
    Early type galaxies (ETGs) frequently show emission from warm ionized gas. These Low Ionization Emission Regions (LIERs) were originally attributed to a central, low-luminosity active galactic nuclei. However, the recent discovery of spatially-extended LIER emission suggests ionization by both a central source and an extended component that follows a stellar-like radial distribution. For passively-evolving galaxies with old stellar populations, hot post-Asymptotic Giant Branch (AGB) stars are the only viable extended source of ionizing photons. In this work, we present the first prediction of LIER-like emission from post-AGB stars that is based on fully self-consistent stellar evolution and photoionization models. We show that models where post-AGB stars are the dominant source of ionizing photons reproduce the nebular emission signatures observed in ETGs, including LIER-like emission line ratios in standard optical diagnostic diagrams and HÎą\alpha equivalent widths of order 0.1-3 angstroms. We test the sensitivity of LIER-like emission to the details of post-AGB models, including the mass loss efficiency and convective mixing efficiency, and show that line strengths are relatively insensitive to post-AGB timescale variations. Finally, we examine the UV-optical colors of the models and the stellar populations responsible for the UV-excess observed in some ETGs. We find that allowing as little as 3% of the HB population to be uniformly distributed to very hot temperatures (30,000 K) produces realistic UV colors for old, quiescent ETGs.Comment: ApJ accepted. 20 pages, 8 figure

    Achievement goals, self-handicapping, and performance: A 2 × 2 achievement goal perspective

    Get PDF
    Elliot and colleagues (2006) examined the effects of experimentally induced achievement goals, proposed by the trichotomous model, on self-handicapping and performance in physical education. Our study replicated and extended the work of Elliot et al. by experimentally promoting all four goals proposed by the 262 model (Elliot & McGregor, 2001), measuring the participants’ own situational achievement goals, using a relatively novel task, and testing the participants in a group setting. We used a randomized experimental design with four conditions that aimed to induce one of the four goals advanced by the 262 model. The participants (n¼138) were undergraduates who engaged in a dart-throwing task. The results pertaining to self-handicapping partly replicated Elliot and colleagues’ findings by showing that experimentally promoted performance-avoidance goals resulted in less practice. In contrast, the promotion of mastery-avoidance goals did not result in less practice compared with either of the approach goals. Dart-throwing performance did not differ among the four goal conditions. Personal achievement goals did not moderate the effects of experimentally induced goals on selfhandicapping and performance. The extent to which mastery-avoidance goals are maladaptive is discussed, as well as the interplay between personal and experimentally induced goals

    Population dynamics and monitoring applied to decision–making

    Get PDF
    Research in wildlife conservation and management often affects decisions made by managers. Improving understanding through applied research is key to advancing the ability to manage birds and other organisms efficiently. Indeed, many papers from EURING 2003 and previous EURING meetings describe research on problems of pressing management concern. In this session, we focus on a subset of studies in which modeling and statistical estimation is explicitly connected to management decision-making. In these decision–centric studies, data are gathered and models are constructed with the explicit intention of using the resulting information to inform decisions about conservation. Whereas ecological models often produce information of value to decision makers, decision models explicitly include two additional features. First, management options are modeled via decision variables that link to system attributes that are directly responsive to management actions, such as harvest and habitat management. Second, certain outcomes are assigned value, via an objective or utility function. Both of these features involve factors beyond the usual consideration of ecological modeling; the first implies the presence of one or more "decision makers", and the second characterizes the societal preferences of each possible outcome resulting from a prospective decision. Our plenary paper, by Tim Haas (Haas, 2004), ventures the furthest into the realm of human behavior and societal processes by modeling the political context for conservation of the endangered cheetah (Acinonyx jubatus) in Africa. Haas shows that scientific information (e.g., population monitoring and population viability analyses) reaches decision makers through multiple pathways, each of which can modify or reinterpret the information signal. A predictive understanding of the country’s political as well as ecological processes is essential. Hass uses a system of interacting ecological and political influence diagrams to capture the stochastic, temporal processes of managing cheetah population in Kenya. The model predicts likely management decisions made by various actors within these countries, (e.g., the President, the Environmental Protection Agency, and rural residents) and the resulting probability of cheetah extinction following these decisions. By approaching the problem in both its political and ecological contexts one avoids consideration of decisions that, while beneficial from a purely conservation point of view, are unlikely to be implemented because of conflicting political objectives. Haas’s analysis demonstrates both the promise and challenges of this type of modeling, and he offers suggestions for overcoming inherent technical difficulties such as model calibration. The second paper, by Simon Hoyle and Mark Maunder (Hoyle & Maunder, 2004), uses a Bayesian approach to model population dynamics and the effects of commercial fishing bycatch for the eastern Pacific Ocean spotted dolphin (Stenella attenuata). Their paper provides a good example of why Bayesian analysis is particularly suited to many management problems. Namely, because it allows the integration of disparate pieces of monitoring data in the simultaneous estimation of population parameters; allows for incorporation of expert judgment and data from other systems and species; and provides for explicit consideration of uncertainty in decision–making. Alternative management scenarios can then be explored via forward simulations. In the third paper, Chris Fonnesbeck and Mike Conroy (Fonnesbeck & Conroy, 2004) present an integrated approach for estimating parameters and predicting abundance of American black duck (Anas rubripes) populations. They also employ a Bayesian approach and overcome some of the computational challenges by using Markov chain–Monte Carlo methods. Ring–recovery and harvest data are used to estimate fall age ratios under alternative reproductive models. These in turn are used to predict abundance of black ducks in each of 3 breeding areas. Finally, calibration of model parameters is obtained by comparing predicted with observed abundance. Although not currently implemented, the authors discuss how a Bayesian approach can be integrated into decision–making procedures using conditional modeling and application of reinforcement or machine learning. The next paper, by Martin Drechler and Franz Wätzold (Drechler & Wätzold, 2004), considers the problem of optimally allocating a conservation budget over time to maximize the survival probability of an endangered species. This must be done in the presence of uncertainty both about the biological system (e.g., probability of extinction under alternative plans), as well as about the availability of future funding. On the one hand, it would be undesirable to imprudently spend money now that might be needed for future conservation effort, when funds may be limited. On the other hand, failure to take action (and thus spend funds) sooner might lead to a higher probability of extinction. Provided estimates of uncertainty in funding, a model for trend in funding, and a model relating funding levels to viability, stochastic dynamic programming can be used to solve for an optimal amount of expenditure during any budget period. The final paper, by Clint Moore and Bill Kendall (Moore & Kendall, 2004), examines the costs incurred when uncalibrated indices to abundance are used in lieu of unbiased abundance estimates to make management decisions. Indices are often used instead of abundance estimates in the belief that the latter are too difficult and expensive. Moore and Kendall analyzed the impacts of using indices when making silvicultural decisions for the joint benefit of two bird populations, an endangered woodpecker and a shrub–nesting neotropical migrant. They computed the expected cost of uncertainty in the relationship between the monitoring index and population size, in currency units of the composite objective for both species. The authors found that substantial degradation of decision value can occur, depending on how uncertain the relationship between the index and true abundance. The results have important implications for managers, who may endeavor to cut costs by using index–based methods, while in the process incur these hidden costs of loss of decision utility. The five papers summarized above provide a good sampling of applications and methodological approaches, but are not a comprehensive coverage of the topic. For useful introductions to decision theory and methods, we suggest that readers consult Lindley (1985) or Clemen & Reilly (2001). A more detailed coverage of optimal decision–making, decision–making under uncertainty, and adaptive resource management is provided in Williams et al. (2002: chapters 21–25)

    Education, employment and migration in Papua New Guinea

    Get PDF
    • …
    corecore