116 research outputs found

    Survey Simulations of a New Near-Earth Asteroid Detection System

    Get PDF
    We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth-Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes >=140 m in effective spherical diameter were simulated using recent determinations of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of new large-format 10 um detector arrays capable of operating at ~35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer and WISE data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth-Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next-generation NEA survey.Comment: AJ accepted; corrected typ

    Asteroseismology from space: The δ Scuti star θ^2 Tauri monitored by the WIRE satellite

    Get PDF
    The bright variable star θ^2 Tau  was monitored with the star camera on the Wide–Field Infrared Explorer satellite. Twelve independent frequencies were detected down to the 0.5 mmag amplitude level. Their reality was investigated by searching for them using two different algorithms and by some internal checks: both procedures strengthened our confidence in the results. All the frequencies are in the range 10.8–14.6 cd^(-1). The histogram of the frequency spacings shows that 81% are below 1.8 cd^(-1); rotation may thus play a role in the mode excitation. The fundamental radial mode is not observed, although it is expected to occur in a region where the noise level is very low (55 μmag). The rms residual is about two times lower than that usually obtained from successful ground–based multisite campaigns. The comparison of the results of previous campaigns with the new ones establishes the amplitude variability of some modes

    Large-scale structure in a new deep IRAS galaxy redshift survey

    Get PDF
    We present here the first results from two recently completed, fully sampled redshift surveys comprising 3703 IRAS Faint Source Survey (FSS) galaxies. An unbiased counts-in-cells analysis finds a clustering strength in broad agreement with other recent redshift surveys and at odds with the standard cold dark matter model. We combine our data with those from the QDOT and 1.2 Jy surveys, producing a single estimate of the IRAS galaxy clustering strength. We compare the data with the power spectrum derived from a mixed dark matter universe. Direct comparison of the clustering strength seen in the IRAS samples with that seen in the APM-Stromlo survey suggests b_O/b_I=1.20+/-0.05 assuming a linear, scale independent biasing. We also perform a cell by cell comparison of our FSS-z sample with galaxies from the first CfA slice, testing the viability of a linear-biasing scheme linking the two. We are able to rule out models in which the FSS-z galaxies identically trace the CfA galaxies on scales 5-20h^{-1}Mpc. On scales of 5 and 10h^{-1}Mpc no linear-biasing model can be found relating the two samples. We argue that this result is expected since the CfA sample includes more elliptical galaxies which have different clustering properties from spirals. On scales of 20h^{-1}Mpc no linear-biasing model with b_O/b_I < 1.70 is acceptable. When comparing the FSS-z galaxies to the CfA spirals, however, the two populations trace the same structures within our uncertaintie

    Evolutionary model and oscillation frequencies for alpha Ursae Majoris: A comparison with observations

    Get PDF
    Inspired by the observations of low-amplitude oscillations of alpha Ursae Majoris A by Buzasi et al. using the WIRE satellite, a,grid of stellar evolutionary tracks has been constructed to derive physically consistent interior models for the nearby red giant. The pulsation properties of these models were then calculated and compared with the observations. It is found that, by adopting the correct metallicity and for a normal helium abundance, only models in the mass range of 4.0-4.5 M. fall within the observational error box for alpha UMa A. This mass range is compatible, within the uncertainties, with the mass derived from the astrometric mass function. Analysis of the pulsation spectra of the models indicates that the observed alpha UMa oscillations can be most simply interpreted as radial (i.e., l = 0) p-mode oscillations of low radial order n. The lowest frequencies observed by Buzasi et al. are compatible, within the observational errors, with model frequencies of radial orders n = 0, 1, and 2 for models in the mass range of 4.0-4.5 M.. The higher frequencies observed can also be tentatively interpreted as higher n-valued radial p-modes, if we allow that some n-values are not presently observed. The theoretical l = 1, 2, and 3 modes in the observed frequency range are g-modes with a mixed mode character, that is, with p-mode-like characteristics near the surface and g-mode-like characteristics in the interior The calculated radial p-mode frequencies are nearly equally spaced, separated by 2-3 mu HZ. The nonradial modes are very densely packed throughout the observed frequency range and, even if excited to significant amplitudes at the surface, are unlikely to be resolved by the present observations

    Preliminary Results from NEOWISE: An Enhancement to the Wide-field Infrared Survey Explorer for Solar System Science

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) has surveyed the entire sky at four infrared wavelengths with greatly improved sensitivity and spatial resolution compared to its predecessors, the Infrared Astronomical Satellite and the Cosmic Background Explorer. NASA's Planetary Science Division has funded an enhancement to the WISE data processing system called "NEOWISE" that allows detection and archiving of moving objects found in the WISE data. NEOWISE has mined the WISE images for a wide array of small bodies in our solar system, including near-Earth objects (NEOs), Main Belt asteroids, comets, Trojans, and Centaurs. By the end of survey operations in 2011 February, NEOWISE identified over 157,000 asteroids, including more than 500 NEOs and ~120 comets. The NEOWISE data set will enable a panoply of new scientific investigations

    Detection of a Nearby Halo Debris Stream in the WISE and 2MASS Surveys

    Get PDF
    Combining the Wide-Field Infrared Survey Explorer All-Sky Release with the Two Micron All Sky Survey Point Source Catalog, we detect a nearby, moderately metal-poor stellar debris stream spanning 24° across the southern sky. The stream, which we designate Alpheus, is at an estimated distance of ~1.9 kpc. Its position, orientation, width, estimated metallicity, and, to some extent, its distance, are in approximate agreement with what one might expect of the leading tidal tail of the southern globular cluster NGC 288

    Large-scale structure in a new deep IRAS galaxy redshift survey

    Get PDF
    We present here the first results from two recently completed, fully sampled redshift surveys comprising 3703 IRAS Faint Source Survey (FSS) galaxies. An unbiased counts-in-cells analysis finds a clustering strength in broad agreement with other recent redshift surveys and at odds with the standard cold dark matter model. We combine our data with those from the QDOT and 1.2 Jy surveys, producing a single estimate of the IRAS galaxy clustering strength. We compare the data with the power spectrum derived from a mixed dark matter universe. Direct comparison of the clustering strength seen in the IRAS samples with that seen in the APM-Stromlo survey suggests b_O/b_I=1.20+/-0.05 assuming a linear, scale independent biasing. We also perform a cell by cell comparison of our FSS-z sample with galaxies from the first CfA slice, testing the viability of a linear-biasing scheme linking the two. We are able to rule out models in which the FSS-z galaxies identically trace the CfA galaxies on scales 5-20h^{-1}Mpc. On scales of 5 and 10h^{-1}Mpc no linear-biasing model can be found relating the two samples. We argue that this result is expected since the CfA sample includes more elliptical galaxies which have different clustering properties from spirals. On scales of 20h^{-1}Mpc no linear-biasing model with b_O/b_I < 1.70 is acceptable. When comparing the FSS-z galaxies to the CfA spirals, however, the two populations trace the same structures within our uncertainties.Comment: Also at ftp://artemis.ph.ic.ac.uk/pub/so/papers/lss_paper.uu; MNRAS Accepted 1995 November 1

    Asteroseismology from space: the Delta Scuti star Theta2 Tauri monitored by the WIRE satellite

    Full text link
    The first intensive photometric time-series of a Delta Scuti star was obtained from space. Theta2 Tau was monitored with the star camera on the Wide-Field Infrared Explorer (WIRE) satellite. Twelve independent frequencies were detected down to the 0.5 mmag amplitude level. Their reality was investigated by searching for them using two different algorithms and by some internal checks. All the frequencies are in the range 10.8-14.6 c\d. The histogram of the frequency spacings shows that 81% are below 1.8 c\d; rotation may thus play a role in the mode excitation. The fundamental radial mode is not observed, although it is expected to occur in a region where the noise level is very low (55 micromag). The rms residual is about two times lower than that usually obtained from successful ground--based multisite campaigns. The comparison of the results of previous campaigns with the new ones establishes the amplitude variability of some modes.Comment: 7 pages (in A&A style), 7 eps figures. Accepted for A&A Main Journa

    The AllWISE Motion Survey and the Quest for Cold Subdwarfs

    Get PDF
    The AllWISE processing pipeline has measured motions for all objects detected on Wide-field Infrared Survey Explorer (WISE) images taken between 2010 January and 2011 February. In this paper, we discuss new capabilities made to the software pipeline in order to make motion measurements possible, and we characterize the resulting data products for use by future researchers. Using a stringent set of selection criteria, we find 22,445 objects that have significant AllWISE motions, of which 3525 have motions that can be independently confirmed from earlier Two Micron All Sky Survey (2MASS) images, yet lack any published motions in SIMBAD. Another 58 sources lack 2MASS counterparts and are presented as motion candidates only. Limited spectroscopic follow-up of this list has already revealed eight new L subdwarfs. These may provide the first hints of a “subdwarf gap” at mid-L types that would indicate the break between the stellar and substellar populations at low metallicities (i.e., old ages). Another object in the motion list--WISEA J154045.67-510139.3--is a bright (J ≈ 9 mag) object of type M6; both the spectrophotometric distance and a crude preliminary parallax place it ~6 pc from the Sun. We also compare our list of motion objects to the recently published list of 762 WISE motion objects from Luhman. While these first large motion studies with WISE data have been very successful in revealing previously overlooked nearby dwarfs, both studies missed objects that the other found, demonstrating that many other nearby objects likely await discovery in the AllWISE data products

    The AllWISE Motion Survey, Part 2

    Get PDF
    We use the AllWISE Data Release to continue our search for WISE-detected motions. In this paper, we publish another 27,846 motion objects, bringing the total number to 48,000 when objects found during our original AllWISE motion survey are included. We use this list, along with the lists of confirmed WISE-based motion objects from the recent papers by Luhman and by Schneider et al. and candidate motion objects from the recent paper by Gagne et al. to search for widely separated, common-proper-motion systems. We identify 1,039 such candidate systems. All 48,000 objects are further analyzed using color-color and color-mag plots to provide possible characterizations prior to spectroscopic follow-up. We present spectra of 172 of these, supplemented with new spectra of 23 comparison objects from the literature, and provide classifications and physical interpretations of interesting sources. Highlights include: (1) the identification of three G/K dwarfs that can be used as standard candles to study clumpiness and grain size in nearby molecular clouds because these objects are currently moving behind the clouds, (2) the confirmation/discovery of several M, L, and T dwarfs and one white dwarf whose spectrophotometric distance estimates place them 5-20 pc from the Sun, (3) the suggestion that the Na 'D' line be used as a diagnostic tool for interpreting and classifying metal-poor late-M and L dwarfs, (4) the recognition of a triple system including a carbon dwarf and late-M subdwarf, for which model fits of the late-M subdwarf (giving [Fe/H] ~ -1.0) provide a measured metallicity for the carbon star, and (5) a possible 24-pc-distant K5 dwarf + peculiar red L5 system with an apparent physical separation of 0.1 pc.Comment: 62 pages with 80 figures, accepted for publication in The Astrophysical Journal Supplement Series, 23 Mar 2016; second version fixes a few small typos and corrects the footnotes for Table
    • …
    corecore