576 research outputs found

    Mars: Mariner 9 spectroscopic evidence for H2O ice clouds

    Get PDF
    Spectral features observed with the Mariner 9 Interferometer Spectrometer are identified as those of water ice. Measured spectra are compared with theoretical calulations for the transfer of radiation through clouds of ice particles with variations in size distribution and integrated cloud mass. Comparisons with an observed spectrum from the Tharsis Ridge region indicate water ice clouds composed of particles with mean radius 2.0 microns and integrated cloud mass 0.00005 g/sq cm

    MAPPING OFFICE WORK TO OFFICE TECHNOLOGY

    Get PDF
    have achieved success with respect to describing what happens in the office, they have contributed far less with respect to prescribing how computer-based technologies can support the office. Here we present TEMO (TEchnological Mapping of Office-work), a procedure which aids the analyst in determining the feasibility of supporting a given office task and suggests which specific software packages might improve performance of that task. In order to illustrate the procedure's application, we present a case in which TEMO is applied, in step-by-step fashion, in order to assess the feasibility of automating a simple set of tasks and to assist in the selection of an appropriate software package. Directions of continuing work in the procedure's extension, enhancement, and evaluation are also described.Information Systems Working Papers Serie

    Thermal emission spectroscopy of the middle atmosphere

    Get PDF
    The general objective of this research is to obtain, via remote sensing, simultaneous measurements of the vertical distributions of stratospheric temperature, ozone, and trace constituents that participate in the catalytic destruction of ozone (NO(sub y): NO, NO2, NO3, HNO3, ClONO2, N2O5, HNO4; Cl(sub x): HOCl), and the source gases for the catalytic cycles (H2O, CH4, N2O, CF2Cl2, CFCl3, CCl4, CH3Cl, CHF2Cl, etc.). Data are collected during a complete diurnal cycle in order to test our present understanding of ozone chemistry and its associate catalytic cycles. The instrumentation employed is an emission-mode, balloon-borne, liquid-nitrogen-cooled Michelson interferometer-spectrometer (SIRIS), covering the mid-infrared range with a spectral resolution of 0.020 cm(exp -1). Cryogenic cooling combined with the use of extrinsic silicon photoconductor detectors allows the detection of weak emission features of stratospheric gaseous species. Vertical distributions of these species are inferred from scans of the thermal emission of the limb in a sequence of elevation angles. The fourth SIRIS balloon flight was carried out from Palestine, Texas on September 15-16, 1986 with 9 hours of nighttime data (40 km). High quality data with spectral resolution 0.022 cm(exp -1), were obtained for numerous limb sequences. Fifteen stratospheric species have been identified to date from this flight: five species from the NO(sub y) family (HNO3, NO2, NO, ClONO2, N2O5), plus CO2, O3, H2O, N2O, CH4, CCl3F, CCl2F2, CHF2Cl, CF4, and CCl4. The nighttime values of N2O5, ClONO2, and total odd nitrogen have been measured for the first time, and compared to model results. Analysis of the diurnal variation of N2O5 within the 1984 and 1986 data sets, and of the 1984 ClONO2 measurements, were presented in the literature. The demonstrated ability of SIRIS to measure all the major NO(sub y) species, and therefore to determine the partitioning of the nitrogen family over a continuous diurnal cycle, is a powerful tool in the verification and improvement of photochemical modeling

    The Nimbus 4 Infrared Spectroscopy Experiment, IRIS-D. Part 1: Calibrated Thermal Emission Spectra

    Get PDF
    Calibrated infrared emission spectra of earth and atmosphere using high resolution interferometer spectrophotometer on Nimbus 4 satellit

    Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model

    Get PDF
    We examined the observed temperature data from Thermal Emission Spectrometer (TES) between heliocentric longitude L_s = 141° and 146° (∼10 Martian days in northern summer) during the mapping phase, then compared them with the simulated results using the NASA/Ames Mars general circulation model. Both show a strong polar vortex at the winter pole, higher equatorial temperatures near the ground and larger tropospheric lapse rates during daytime than at night. However, the simulation is colder than the observation at the bottom and top of the atmosphere and warmer in the middle. The highest wave activities are found in the polar front in both the simulations and the observations, but it is at a much higher altitude in the former. Experiments show that larger dust opacity improves the temperature field in the lower atmospheric levels. Using a steady state Kalman filter, we attempted to obtain a model state that is consistent with the observations. The assimilation did achieve better agreement with the observations overall, especially over the north pole. However, it is hard to make any further improvement. Dust opacity is the key factor in determining the temperature field; correcting temperature alone improves the spatial and temporal variations, it degrades the mean state in the south pole. Assimilation cannot improve the simulation further, unless more realistic dust opacity and its vertical profile are considered

    Mapping office work to office technology

    Full text link
    corecore