286 research outputs found
50 Years of Spaceflight with Fourier Transform Spectrometers (FTS) Built at NASA GSFC
Over the past 50 years, NASA Goddard Space Flight Center (GSFC) has been developing, building, testing and flying a series of Fourier Transform Spectrometers (FTS). This began with the IRIS instruments on the Earth-orbiting Nimbus satellites and progressed to more sophisticated designs optimized for interplanetary spacecraft sent to Mars and later to the outer solar system. Adaptions have been made over time, including progressively higher spectral resolution, sensitivity, numbers of detectors and complexity. Instrument operating temperatures have decreased to enable remote sensing of the cold giant planet systems. In this paper we describe the historical evolution of this instrument line, comparing and contrasting different aspects such as optical design and materials, detector types and data handling. We conclude by looking towards the future. At present the CIRS-Lite prototype is being tested at NASA GSFC for potential use on a future mission to the ice giants, Uranus and Neptune. Surpassing the previous performance of the Voyager IRIS instruments remains challenging, and new technologies that could enable these measurements are discussed
Cryogenic Hydrogen Oxygen Propulsion System for Planetary Science Missions
A Cryogenic Hydrogen Oxygen Propulsion System (CHOPS) that uses liquid hydrogen (LH2) and liquid oxygen (LO2) propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling, advanced insulation, low thermal conductivity structures allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both
Titan's Surface Temperatures from Cassini CIRS
The surface brightness temperature of Titan can be measured from Cassini through a spectral window at 19 microns where the atmosphere is low in opacity. The Composite Infrared Spectrometer (CIRS) on Cassini observes this wavelength in its far-infrared channel. Because the Cassini tour has provided global coverage and a range of viewing geometries, CIRS has been able to go beyond the earlier flyby results of Voyager IRIS Near the equator, CIRS measures the zonally-averaged surface brightness temperature to be 917 K, very close to the temperature found at the surface by Huygens. Latitude maps show that Titan's surface temperatures drop off by about 2 K toward the south and by about 3 K toward the north. This temperature distribution is consistent with Titan's late northern winter when the data were taken. As the seasons progress, CIRS is continuing to search for corresponding changes in the temperatures of the surface and lower atmosphere. CIRS is also extending global mapping to both latitude and longitude to look for correlations between surface temperatures and geological features
Upper limits for PH3 and H2S in Titan's Atmosphere from Cassini CIRS
We have searched for the presence of simple P and S-bearing molecules in
Titan's atmosphere, by looking for the characteristic signatures of phosphine
and hydrogen sulfide in infrared spectra obtained by Cassini CIRS. As a result
we have placed the first upper limits on the stratospheric abundances, which
are 1 ppb (PH3) and 330 ppb (H2S), at the 2-sigma significance level.Comment: 12 pages text, 1 table, 2 figure
Surface Temperatures on Titan; Changes During the Cassini Mission
Surface brightness temperatures on Titan measured by the Composite Infrared Spectrometer (CIRS) aboard Cassini span the period from late northern winter to early spring. The CIRS observations cover all latitudes and can be used to study meridional changes with season. CIRS previously reported surface temperatures from 2004-2008 which were 93.7 K at the equator with decreases of 2 K toward the south pole and 3 K toward the north pole'. From a comparison of the equinox period with the earlier data, CIRS can now detect a seasonal shift in the latitudinal distribution of temperatures. Around the time of the equinox the meridional distribution was more symmetric about the equator than had been found earlier in the mission. The equatorial surface temperatures remained close to 94 K, but in the south the temperatures had decreased by about 0.5 K and in the north had increased by about 0.5 K. The CIRS equinox results are similar to what was seen near the previous vernal equinox by Voyager IRIS Z. The observed surface temperatures can help constrain the type of surface material by comparison with predictions from general circulation models. Of the three cases treated by Tokano t , our measurements most closely match a porous-ice regolith. As Cassini continues through Titan's northern spring CIRS will extend its temporal and spatial coverage and will continue to search for seasonal variations in surface temperature
Seasonal Changes in Titan's Surface Temperatures
Cassini's extended mission has provided the opportunity to search for seasonal variations on Titan. In particular, surface temperatures are expected to have shifted significantly in latitude during the completed portion of the mission. Spectra recorded by the Composite Infrared Spectrometer (CIRS) during the nominal mission (2004-08) and the Equinox mission. (2008-10) have already shown changes in temperature. CIRS has detected a seasonal shift in the latitudinal distribution of surface brightness temperatures by comparing zonal averages from two time segments, one period in late northern winter centered on L(sub s) approximately 335 deg and a second period centered on the equinox (L(sub s) approximately 0 deg.). The earlier period had a meridional distribution similar to that previously reported: 93.5 K at the equator, 91.7 K at 85 S and 899 K at 85 N. The newly measured distribution near equinox shows a cooling in the south and a warming in the north, both by about 0.5 K. We estimate that. the centroid of the distribution moved from approximately 16 S to 7 S between the two periods. This gives a seasonal lag behind insolation of delta L(sub s) approximately 13 deg. The CIRS equinox results are consistent with those of Voyager IRIS, which encountered Titan in November 1980, just following the previous northern equinox (L(sub s) = 10 deg.). When compared with predictions from general circulation models, seasonal variations of surface temperature can help constrain the identification of surface materials. Our measurements most closely match the case of a porous ice regolith treated by Tokano, but with some apparent differences between the northern and southern hemispheres. CIRS will extend its study of seasonal variations in surface temperature on Titan as Cassini continues through northern spring
User Guide to the PDS Dataset for the Cassini Composite Infrared Spectrometer (CIRS)
This User Guide to the Cassini Composite Infrared Spectrometer (CIRS) has been written with two communities in mind. First and foremost, scientists external to the Cassini Project who seek to use the CIRS data as archived in the Planetary Data System (PDS). In addition, it is intended to be a comprehensive reference guide for those internal to the CIRS team
Transient Climate Effects of Large Impacts on Titan
Titan's thick atmosphere and volatile-rich surface cause it to respond to big impacts in a somewhat Earth-like manner. Here we construct a simple globally-averaged model that tracks the flow of energy through the environment in the weeks, years, and millenia after a big comet strikes Titan. The model Titan is endowed with 1.4 bars of N2 and 0.07 bars of CH4, methane lakes, a water ice crust, and enough methane underground to saturate the regolith to the surface. We find that a nominal Menrva impact is big enough to raise the surface temperature by approx. 80 K and to double the amount of methane in the atmosphere. The extra methane drizzles out of the atmosphere over hundreds of years. An upper-limit Menrva is just big enough to raise the surface to water's melting point. The putative Hotei impact (a possible 800-1200 km diameter basin, Soderblom et al., 2009) is big enough to raise the surface temperature to 350-400 K. Water rain must fall and global meltwaters might range between 50 m to more than a kilometer deep, depending on the details. Global meltwater oceans do not last more than a few decades or centuries at most, but are interesting to consider given Titan's organic wealth. Significant near-surface clathrate formation is possible as Titan cools but faces major kinetic barriers
Measurement of CHD on Titan at Submillimeter Wavelengths
We present the first radio/submillimeter detection of monodeuterated methane
(CHD) in Titan's atmosphere, using archival data from of the Atacama Large
Millimeter/submillimeter Array (ALMA). The and
transitions at 465.235 and 465.250 GHz ( mm) were measured at
significance levels of and , respectively. These two
lines were modeled using the Non-linear optimal Estimator for MultivariatE
spectral analySIS (NEMESIS) radiative transfer code to determine the
disk-averaged CHD volume mixing ratio = in Titan's
stratosphere (at altitudes km). By comparison with the CH vertical
abundance profile measured by Cassini-Huygens mass spectrometry, the resulting
value for D/H in CH is . This is consistent
with previous ground-based and in-situ measurements from the Cassini-Huygens
mission, though slightly lower than the average of the previous values.
Additional CHD observations at higher spatial resolution will be required
to determine a value truly comparable with the Cassini-Huygens CH
measurements, by measuring CHD with ALMA close to Titan's equator. In the
post-Cassini era, spatially resolved observations of CHD with ALMA will
enable the latitudinal distribution of methane to be determined, making this an
important molecule for further studies.Comment: 9 pages, 4 figure
Forward modelling low-spectral-resolution Cassini/CIRS observations of Titan
The Composite InfraRed Spectrometer (CIRS) instrument onboard the Cassini spacecraft performed 8.4 million spectral observations of Titan at resolutions between 0.5–15.5 cm-1. More than 3 million of these were acquired at a low spectral resolution (SR) (13.5–15.5 cm-1), which have excellent spatial and temporal coverage in addition to the highest spatial resolution and lowest noise per spectrum of any of the CIRS observations. Despite this, the CIRS low-SR dataset is currently underused for atmospheric composition analysis, as spectral features are often blended and subtle compared to those in higher SR observations. The vast size of the dataset also poses a challenge as an efficient forward model is required to fully exploit these observations. Here, we show that the CIRS FP3/4 nadir low-SR observations of Titan can be accurately forward modelled using a computationally efficient correlated-k method. We quantify wavenumber-dependent forward modelling errors, with mean 0.723 nW cm-2 sr-1/cm-1 (FP3: 600–890 cm-1) and 0.248 nW cm-2 sr-1/ cm-1 (FP4: 1240–1360 cm-1), that can be used to improve the rigour of future retrievals. Alternatively, in cases where more accuracy is required, we show observations can be forward modelled using an optimised line-by-line method, significantly reducing computation time
- …