211 research outputs found

    Partitioned time discretization for atmosphere-ocean interaction

    Get PDF
    Numerical algorithms are proposed, analyzed and tested for improved efficiency and reliabil-ity of the dynamic core of climate codes. The commonly used rigid lid hypothesis is assumed,which allows instantaneous response of the interface to changes in mass. Additionally, mois-ture transport is ignored, resulting in a static interface. A central algorithmic feature is thenumerical decoupling of the atmosphere and ocean calculations by a semi-implicit treatmentof the interface data, i.e. partitioned time stepping. Algorithms are developed for simpli-fied continuum models retaining the key mathematical structure of the atmosphere-oceanequations. The work begins by studying linear parameterization of momentum flux in terms of windshear, coupling the equations. Partitioned variants of backward-Euler are developed allowinglarge time steps. Higher order accuracy is achieved by deferred correction. Adaptations aredeveloped for nonlinear coupling. Most notably an application of geometric averaging isused to retain unconditional stability. This algorithm is extended to allow different size timesteps for the subcalculations. Full numerical analyses are performed and computationalexperiments are provided. Next, heat convection is added including a nonlinear parameterization of heat flux interms of wind shear and temperature. A partitioned algorithm is developed for the atmo-sphere and ocean coupled velocity-temperature system that retains unconditional stability.Furthermore, uncertainty quantification is performed in this case due to the importance ofreliably calculating heat transport phenomena in climate modeling. Noise is introduced in two coupling parameters with an important role in stability. Numerical tests investigate thevariance in temperature, velocity and average surface temperature. Partitioned methods are highly efficient for linearly coupled 2 fluid problems. Exten-sions of these methods for nonlinear coupling where the interface data is processed properlybefore passing yield highly efficient algorithms. One reason is due to their strong stabilityproperties. Convergence also holds under time step restrictions not dependent on mesh size.It is observed that two-way coupling (requiring knowledge of both atmosphere and oceanvelocities on the interface) generates less uncertainty in the calculation of average surfacetemperature compared to one-way models (only requiring knowledge of the wind velocity)

    Reflection Spectroscopy of the Black Hole Binary XTE J1752-223 in its Long-Stable Hard State

    Get PDF
    We present a detailed spectral analysis of the Black Hole Binary XTE J1752-223 in the hard state of its 2009 outburst. Regular monitoring of this source by RXTE provided high signal-to-noise spectra along the outburst rise and decay. During one full month this source stalled at ∼\sim30\% of its peak count rate at a constant hardness and intensity. By combining all the data in this exceptionally-stable hard state, we obtained an aggregate PCA spectrum (3-45 keV) with 100 million counts, and a corresponding HEXTE spectrum (20-140 keV) with 5.8 million counts. Implementing a version of our reflection code with a physical model for Comptonization, we obtain tight constraints on important physical parameters for this system. In particular, the inner accretion disk is measured very close in, at Rin=1.7±0.4R_\mathrm{in}=1.7\pm0.4 RgR_g. Assuming Rin=RISCOR_\mathrm{in}=R_\mathrm{ISCO}, we find a relatively high black hole spin (a∗=0.92±0.06a_*=0.92\pm0.06). Imposing a lamppost geometry, we obtain a low inclination (i=35±4i=35\pm4 deg), which agrees with the upper limit found in the radio (i<49i<49 deg). However, we note that this model cannot be statistically distinguished from a non-lamppost model with free emissivity index, for which the inclination is markedly higher. Additionally, we find a relatively cool corona (57−7057-70 keV), and large iron abundance (3.3−3.73.3-3.7 solar). We further find that properly accounting for Comptonization of the reflection emission improves the fit significantly and causes an otherwise low reflection fraction (∼0.2−0.3\sim 0.2-0.3) to increase by an order of magnitude, in line with geometrical expectations for a lamppost corona. We compare these results with similar investigations reported for GX 339-4 in its bright hard state.Comment: Accepted for publication in ApJ. 11 pages, 7 figure

    Charged Beads Enhance Cutaneous Wound Healing in Rhesus Non-Human Primates

    Full text link
    Enhanced cutaneous wound healing by positively charged cross-linked diethylaminoethyl dextran beads (CLOD) was studied in a standardized incisional wound model in 20 adult and 20 geriatric 111acaca mulatta (rhesus) partitioned equally over five time periods. Physiologic saline served as a control. Soft-tissue linear incisions were prepared between and l cm inferior to the scapulae. There were four incisions per rhesus; each incision was 1.5 cm long with 1 cm of undisturbed tissue between incisions, and both the experimental CLDD and physiologic saline treatments were administered to each rhesus. The incision treatments were either CLDD and soft-tissue closure with 4-0 BioSyn sutures or sterile physiologic saline and closure with 4-0 BioSyn smures. The hypothesis was CLDD would enhance cutaneous wound repair. Verification of the h ypothesis consisted of clinical examinations and histologic and tensiometric evaluations on biopsy specimens at 10 and 15 days, whereas 5-day and 2- and 4-month groups were assessed clinically and biopsy specimens were assessed histolog ically. The clinical course of healing for all groups was unremarkable. At 10 days, incisions in adult rhesus treated with CLDD had a 30-percent greater tensile strength compared with the physiologic saline-treated incisions (p = 0.01), whereas for geriatric rhesus, the CLDD treatment proved to be 15 percent greater in tensile strength compared with the physiologic saline cohort (p = 0.11). By day 15, incisions in adult rhesus were 26 percent stronger than the saline treatment group (/J = 0.07), and the difference was 36 percent (p = 0.02) for the geriatric rhesus. From 5 through 15 days, histologic observations revealed a gradual decrease in quantity and integrity of CLOD, with no remnants ofCLDD at either 2 or 4 months. Macrophages and multinucleated giant cells wer.e localized in the dermis and were associated with the CLDD. These cells decreased commensurately with the decrease of CLDD beads. The data suggest that CLDD can enhance significantly the tensile properties of healing cutaneous wounds in both adult and geriatric rhesus. Moreover, if the wound healing is enhanced in geriatric patients, this finding may be clinically germane to conditions where wound healing is compromised, such as in diabetics and patients on steroids

    Reflection Spectroscopy of the Black Hole Binary XTE J1752−223 in Its Long-stable Hard State

    Get PDF
    We present a detailed spectral analysis of the black hole binary XTE J1752−223 in the hard state of its 2009 outburst. Regular monitoring of this source by the Rossi X-ray Timing Explorer mission provided high signal-to-noise spectra along the outburst rise and decay. During one full month this source stalled at ~30% of its peak count rate at a constant hardness and intensity. By combining all the data in this exceptionally stable hard state, we obtained an aggregate proportional counter array spectrum (3–45 keV) with 100 million counts, and a corresponding high energy X-ray timing experiment spectrum (20–140 keV) with 5.8 million counts. Implementing a version of our reflection code with a physical model for Comptonization, we obtain tight constraints on important physical parameters for this system. In particular, the inner accretion disk is measured very close in, at R_(in) = 1.7 ± 0.4 R_g . Assuming R_(in_ = R_(ISCO), we find a relatively high black hole spin (a_* = 0.92 ± 0.06). Imposing a lamppost geometry, we obtain a low inclination (i = 35° ± 4°), which agrees with the upper limit found in the radio (i < 49°). However, we note that this model cannot be statistically distinguished from a non-lamppost model with a free emissivity index, for which the inclination is markedly higher. Additionally, we find a relatively cool corona (57–70 keV) and large iron abundance (3.3–3.7 solar). We further find that properly accounting for Comptonization of the reflection emission improves the fit significantly and causes an otherwise low reflection fraction (~0.2–0.3) to increase by an order of magnitude, in line with geometrical expectations for a lamppost corona. We compare these results with similar investigations reported for GX 339−4 in its bright hard state

    Overview and status of EXCLAIM, the experiment for cryogenic large-aperture intensity mapping

    Full text link
    The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne far-infrared telescope that will survey star formation history over cosmological time scales to improve our understanding of why the star formation rate declined at redshift z < 2, despite continued clustering of dark matter. Specifically,EXCLAIM will map the emission of redshifted carbon monoxide and singly-ionized carbon lines in windows over a redshift range 0 < z < 3.5, following an innovative approach known as intensity mapping. Intensity mapping measures the statistics of brightness fluctuations of cumulative line emissions instead of detecting individual galaxies, thus enabling a blind, complete census of the emitting gas. To detect this emission unambiguously, EXCLAIM will cross-correlate with a spectroscopic galaxy catalog. The EXCLAIM mission uses a cryogenic design to cool the telescope optics to approximately 1.7 K. The telescope features a 90-cm primary mirror to probe spatial scales on the sky from the linear regime up to shot noise-dominated scales. The telescope optical elements couple to six {\mu}-Spec spectrometer modules, operating over a 420-540 GHz frequency band with a spectral resolution of 512 and featuring microwave kinetic inductance detectors. A Radio Frequency System-on-Chip (RFSoC) reads out the detectors in the baseline design. The cryogenic telescope and the sensitive detectors allow EXCLAIM to reach high sensitivity in spectral windows of low emission in the upper atmosphere. Here, an overview of the mission design and development status since the start of the EXCLAIM project in early 2019 is presented.Comment: SPIE Astronomical Telescopes + Instrumentation. arXiv admin note: substantial text overlap with arXiv:1912.0711

    Estimating Long-Term Survival of Critically Ill Patients: The PREDICT Model

    Get PDF
    BACKGROUND: Long-term survival outcome of critically ill patients is important in assessing effectiveness of new treatments and making treatment decisions. We developed a prognostic model for estimation of long-term survival of critically ill patients. METHODOLOGY AND PRINCIPAL FINDINGS: This was a retrospective linked data cohort study involving 11,930 critically ill patients who survived more than 5 days in a university teaching hospital in Western Australia. Older age, male gender, co-morbidities, severe acute illness as measured by Acute Physiology and Chronic Health Evaluation II predicted mortality, and more days of vasopressor or inotropic support, mechanical ventilation, and hemofiltration within the first 5 days of intensive care unit admission were associated with a worse long-term survival up to 15 years after the onset of critical illness. Among these seven pre-selected predictors, age (explained 50% of the variability of the model, hazard ratio [HR] between 80 and 60 years old = 1.95) and co-morbidity (explained 27% of the variability, HR between Charlson co-morbidity index 5 and 0 = 2.15) were the most important determinants. A nomogram based on the pre-selected predictors is provided to allow estimation of the median survival time and also the 1-year, 3-year, 5-year, 10-year, and 15-year survival probabilities for a patient. The discrimination (adjusted c-index = 0.757, 95% confidence interval 0.745-0.769) and calibration of this prognostic model were acceptable. SIGNIFICANCE: Age, gender, co-morbidities, severity of acute illness, and the intensity and duration of intensive care therapy can be used to estimate long-term survival of critically ill patients. Age and co-morbidity are the most important determinants of long-term prognosis of critically ill patients

    The Simons Observatory microwave SQUID multiplexing detector module design

    Full text link
    Advances in cosmic microwave background (CMB) science depend on increasing the number of sensitive detectors observing the sky. New instruments deploy large arrays of superconducting transition-edge sensor (TES) bolometers tiled densely into ever larger focal planes. High multiplexing factors reduce the thermal loading on the cryogenic receivers and simplify their design. We present the design of focal-plane modules with an order of magnitude higher multiplexing factor than has previously been achieved with TES bolometers. We focus on the novel cold readout component, which employs microwave SQUID multiplexing (μ\mumux). Simons Observatory will use 49 modules containing 60,000 bolometers to make exquisitely sensitive measurements of the CMB. We validate the focal-plane module design, presenting measurements of the readout component with and without a prototype detector array of 1728 polarization-sensitive bolometers coupled to feedhorns. The readout component achieves a 95%95\% yield and a 910 multiplexing factor. The median white noise of each readout channel is 65 pA/Hz\mathrm{pA/\sqrt{Hz}}. This impacts the projected SO mapping speed by <8%< 8\%, which is less than is assumed in the sensitivity projections. The results validate the full functionality of the module. We discuss the measured performance in the context of SO science requirements, which are exceeded.Comment: Accepted to The Astrophysical Journa
    • …
    corecore