5,882 research outputs found

    Site selective reading of epigenetic markers by a dual-mode synthetic receptor array.

    Get PDF
    Variably functionalized self-folding deep cavitands form an arrayed, fluorescent indicator displacement assay system for the detection of post-translationally modified (PTM) histone peptides. The hosts bind trimethyllysine (KMe3) groups, and use secondary upper rim interactions to provide more sensitive discrimination between targets with identical KMe3 binding handles. The sensor array uses multiple different recognition modes to distinguish between miniscule differences in target, such as identical lysine modifications at different sites of histone peptides. In addition, the sensor is affected by global changes in structure, so it is capable of discriminating between identical PTMs, at identical positions on amino acid fragments that vary only in peptide backbone length, and can be applied to detect non-methylation modifications such as acetylation and phosphorylations located multiple residues away from the targeted binding site. The synergistic application of multiple variables allows dual-mode deep cavitands to approach levels of recognition selectivity usually only seen with antibodies

    Soliton microcomb based spectral domain optical coherence tomography

    Full text link
    Spectral domain optical coherence tomography (SD-OCT) is a widely used and minimally invaive technique for bio-medical imaging [1]. SD-OCT typically relies on the use of superluminescent diodes (SLD), which provide a low-noise and broadband optical spectrum. Recent advances in photonic chipscale frequency combs [2, 3] based on soliton formation in photonic integrated microresonators provide an chipscale alternative illumination scheme for SD-OCT. Yet to date, the use of such soliton microcombs in OCT has not yet been analyzed. Here we explore the use of soliton microcombs in spectral domain OCT and show that, by using photonic chipscale Si3N4 resonators in conjunction with 1300 nm pump lasers, spectral bandwidths exceeding those of commercial SLDs are possible. We demonstrate that the soliton states in microresonators exhibit a noise floor that is ca. 3 dB lower than for the SLD at identical power, but can exhibit significantly lower noise performance for powers at the milliWatt level. We perform SD-OCT imaging on an ex vivo fixed mouse brain tissue using the soliton microcomb, alongside an SLD for comparison, and demonstrate the principle viability of soliton based SD-OCT. Importantly, we demonstrate that classical amplitude noise of all soliton comb teeth are correlated, i.e. common mode, in contrast to SLD or incoherent microcomb states [4], which should, in theory, improve the image quality. Moreover, we demonstrate the potential for circular ranging, i.e. optical sub-sampling [5, 6], due to the high coherence and temporal periodicity of the soliton state. Taken together, our work indicates the promising properties of soliton microcombs for SD-OCT

    FSVPy: A Python-based Package for Fluorescent Streak Velocimetry (FSV)

    Full text link
    Predictive constitutive equations that connect easy-to-measure transport properties (e.g., viscosity and conductivity) with system performance variables (e.g., power consumption and efficiency) are needed to design advanced thermal and electrical systems. In this work, we explore the use of fluorescent particle-streak analysis to directly measure the local velocity field of a pressure-driven flow, introducing a new Python package (FSVPy) to perform the analysis. Fluorescent streak velocimetry (FSV) combines high-speed imaging with highly fluorescent particles to produce images that contain fluorescent streaks, whose length and intensity can be related to the local flow velocity. By capturing images throughout the sample volume, the three-dimensional velocity field can be quantified and reconstructed. We demonstrate this technique by characterizing the channel flow profiles of several non-Newtonian fluids: micellar Cetylpyridinium Chloride solution, Carbopol 940, and Polyethylene Glycol. We then explore more complex flows, where significant acceleration is created due to micro-scale features encountered within the flow. We demonstrate the ability of FSVPy to process streaks of various shapes, and use the variable intensity along the streak to extract position-specific velocity measurements from individual images. Thus, we demonstrate that FSVPy is a flexible tool that can be used to extract local velocimetry measurements from a wide variety of fluids and flow conditions

    Hybrid Integrated Photonics Using Bulk Acoustic Resonators

    Full text link
    Microwave frequency acousto-optic modulation is realized by exciting high overtone bulk acoustic wave resonances (HBAR resonances) in the photonic stack. These confined mechanical stress waves transmit exhibit vertically transmitting, high quality factor (Q) acoustic Fabry Perot resonances that extend into the Gigahertz domain, and offer stress-optical interaction with the optical modes of the microresonator. Although HBAR are ubiquitously used in modern communication, and often exploited in superconducting circuits, this is the first time they have been incorporated on a photonic circuit based chip. The electro-acousto-optical interaction observed within the optical modes exhibits high actuation linearity, low actuation power and negligible crosstalk. Using the electro-acousto-optic interaction, fast optical resonance tuning is achieved with sub-nanosecond transduction time. By removing the silicon backreflection, broadband acoustic modulation at 4.1 and 8.7 GHz is realized with a 3 dB bandwidth of 250 MHz each. The novel hybrid HBAR nanophotonic platform demonstrated here, allowing on chip integration of micron-scale acoustic and photonic resonators, can find immediate applications in tunable microwave photonics, high bandwidth soliton microcomb stabilization, compact opto-electronic oscillators, and in microwave to optical conversion schemes. Moreover the hybrid platform allows implementation of momentum biasing, which allows realization of on chip non-reciprocal devices such as isolators or circulators and topological photonic bandstructures.Comment: 41 pages, 4 figure

    Trade-offs and Optimisation of Land-Use for Pastoralism and Carbon in Southeastern Australia

    Get PDF
    Globally, pressure to ensure future food security is being challenged by competing needs for multiple land-uses in agricultural systems. Rangelands are both a source of greenhouse gas emissions as well as providing opportunities for emissions reduction. Carbon farming is a new land-use option that sequesters carbon in vegetation and soils. National incentive programs in Australia for this option have resulted in significant recent land-use change across Australian rangelands. Beyond the mitigation benefits, the potential for carbon farming income to enhance socio-ecological resilience in rangelands has been identified. However, there are major uncertainties about the impacts of climate change on sequestration rates and trade-offs between land-use for carbon and pastoral production. The AUD2.45billionCommonwealthEmissionsReductionFundhasdrivenrecentlandusechangeandafurtherAUD2.45 billion Commonwealth Emissions Reduction Fund has driven recent land-use change and a further AUD2 billion over the next 10 years, coupled with a fast-growing secondary carbon market is continuing to drive demand for carbon credits. The ability to supply these carbon credits and meet international emissions reduction obligations but limit the trade-offs with pastoral production can be supported through an identification of spatial prioritisation and optimisation at a landscape scale. We use a case study of New South Wales where ~3 million ha of traditional rangeland pastoralism is currently delivering ~27% of the national land sector abatement. Priority areas and optimisation of land-use for carbon farming and production under current and future climates were determined by developing a Carbon Optimisation Model (COM). This high-resolution integrated environmental-economic model provides predictions of spatiotemporal dynamics of land-use options for variations of incentive payment levels and policy settings. Regional downscaling of an ensemble of global circulation models (GCMs) were used to predict the climate impacts on future sequestration rates derived from 3PG forest growth model to quantify carbon supply under future climates. The COM can be used to produce spatial maps to underpin strategic prioritisation abatement activities and allow abatement opportunities to be incorporated into regional NRM planning

    Nanoparticulate matter exposure results in white matter damage and an inflammatory microglial response in an experimental murine model

    Get PDF
    Exposure to ambient air pollution has been associated with white matter damage and neurocognitive decline. However, the mechanisms of this injury are not well understood and remain largely uncharacterized in experimental models. Prior studies have shown that exposure to particulate matter (PM), a sub-fraction of air pollution, results in neuroinflammation, specifically the upregulation of inflammatory microglia. This study examines white matter and axonal injury, and characterizes microglial reactivity in the corpus callosum of mice exposed to 10 weeks (150 hours) of PM. Nanoscale particulate matter (nPM, aerodynamic diameter ≤200 nm) consisting primarily of traffic-related emissions was collected from an urban area in Los Angeles. Male C57BL/6J mice were exposed to either re-aerosolized nPM or filtered air for 5 hours/day, 3 days/week, for 10 weeks (150 hours; n = 18/group). Microglia were characterized by immunohistochemical double staining of ionized calcium-binding protein-1 (Iba-1) with inducible nitric oxide synthase (iNOS) to identify pro-inflammatory cells, and Iba-1 with arginase-1 (Arg) to identify anti-inflammatory/ homeostatic cells. Myelin injury was assessed by degraded myelin basic protein (dMBP). Oligodendrocyte cell counts were evaluated by oligodendrocyte transcription factor 2 (Olig2). Axonal injury was assessed by axonal neurofilament marker SMI-312. iNOS-expressing microglia were significantly increased in the corpus callosum of mice exposed to nPM when compared to those exposed to filtered air (2.2 fold increase; p\u3c0.05). This was accompanied by an increase in dMBP (1.4 fold increase; p\u3c0.05) immunofluorescent density, a decrease in oligodendrocyte cell counts (1.16 fold decrease; p\u3c0.05), and a decrease in neurofilament SMI-312 (1.13 fold decrease; p\u3c0.05) immunofluorescent density. Exposure to nPM results in increased inflammatory microglia, white matter injury, and axonal degradation in the corpus callosum of adult male mice. iNOS-expressing microglia release cytokines and reactive oxygen/ nitrogen species which may further contribute to the white matter damage observed in this model

    Oxaliplatin-induced loss of phosphorylated heavy neurofilament subunit neuronal immunoreactivity in rat DRG tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxaliplatin and related chemotherapeutic drugs cause painful chronic peripheral neuropathies in cancer patients. We investigated changes in neuronal size profiles and neurofilament immunoreactivity in L5 dorsal root ganglion (DRG) tissue of adult female Wistar rats after multiple-dose treatment with oxaliplatin, cisplatin, carboplatin or paclitaxel.</p> <p>Results</p> <p>After treatment with oxaliplatin, phosphorylated neurofilament heavy subunit (pNF-H) immunoreactivity was reduced in neuronal cell bodies, but unchanged in nerve fibres, of the L5 DRG. Morphometric analysis confirmed significant changes in the number (-75%; <it>P </it>< 0.0002) and size (-45%; <it>P </it>< 0.0001) of pNF-H-immunoreactive neurons after oxaliplatin treatment. pNF-H-immunoreactive neurons had overlapping size profiles and co-localisation with neurons displaying cell body immunoreactivity for parvalbumin, non-phospho-specific neurofilament medium subunit (NF-M) and non-phospho-specific neurofilament heavy subunit (NF-H), in control DRG. However, there were no significant changes in the numbers of neurons with immunoreactivity for parvalbumin (4.6%, <it>P </it>= 0.82), NF-M (-1%, <it>P </it>= 0.96) or NF-H (0%; <it>P </it>= 0.93) after oxaliplatin treatment, although the sizes of parvalbumin (-29%, <it>P </it>= 0.047), NF-M (-11%, <it>P </it>= 0.038) and NF-H (-28%; <it>P </it>= 0.0033) immunoreactive neurons were reduced. In an independent comparison of different chemotherapeutic agents, the number of pNF-H-immunoreactive neurons was significantly altered by oxaliplatin (-77.2%; <it>P </it>< 0.0001) and cisplatin (-35.2%; <it>P </it>= 0.03) but not by carboplatin or paclitaxel, and their mean cell body area was significantly changed by oxaliplatin (-31.1%; <it>P </it>= 0.008) but not by cisplatin, carboplatin or paclitaxel.</p> <p>Conclusion</p> <p>This study has demonstrated a specific pattern of loss of pNF-H immunoreactivity in rat DRG tissue that corresponds with the relative neurotoxicity of oxaliplatin, cisplatin and carboplatin. Loss of pNF-H may be mechanistically linked to oxaliplatin-induced neuronal atrophy, and serves as a readily measureable endpoint of its neurotoxicity in the rat model.</p
    corecore