324 research outputs found

    Does naltrexone treatment lead to depression? Findings from a randomized controlled trial in subjects with opioid dependence

    Get PDF
    Objective: Dysphoria and depression have been cited as side effects of the opioid antagonist naltrexone. We aimed to assess whether depressive symptoms are a clinically relevant side effect in a population receiving naltrexone as a treatment for opioid dependence. Methods: We carried out a randomized controlled, open-label trial comparing rapid opiate detoxification under anesthesia and naltrexone treatment with continued methadone maintenance at the Alcohol and Drug Service, Royal Brisbane and Women's Hospital, Brisbane, Australia. The study subjects were patients stabilized on methadone maintenance treatment for heroin dependence who wished to transfer to naltrexone treatment. The Beck Depression Inventory, State-Trait Anxiety Inventory and Opiate Treatment Index subscales for heroin use and social functioning were used at baseline and follow-up assessments at 1, 2, 3 and 6 months. Results: Forty-two participants were allocated to receive naltrexone treatment, whereas 38 continued methadone maintenance as the control condition. Participants who received naltrexone did not exhibit worsening of depressive symptoms. In participants attending all follow-up assessments, there was a trend for those receiving naltrexone to exhibit an improvement in depression over time compared with the control group. Participants who were adherent to naltrexone treatment exhibited fewer depressive symptoms than those who were nonadherent. Conclusions: These results suggest that depression need not be considered a common adverse effect of naltrexone treatment or a treatment contraindication and that engaging with or adhering to naltrexone treatment may be associated with fewer depressive symptoms

    Radioactive Source Localisation via Projective Linear Reconstruction

    Get PDF
    Radiation mapping, through the detection of ionising gamma-ray emissions, is an important technique used across the nuclear industry to characterise environments over a range of length scales. In complex scenarios, the precise localisation and activity of radiological sources becomes difficult to determine due to the inability to directly image gamma photon emissions. This is a result of the potentially unknown number of sources combined with uncertainties associated with the source-detector separation—causing an apparent ‘blurring’ of the as-detected radiation field relative to the true distribution. Accurate delimitation of distinct sources is important for decommissioning, waste processing, and homeland security. Therefore, methods for estimating the precise, ‘true’ solution from radiation mapping measurements are required. Herein is presented a computational method of enhanced radiological source localisation from scanning survey measurements conducted with a robotic arm. The procedure uses an experimentally derived Detector Response Function (DRF) to perform a randomised-Kaczmarz deconvolution from robotically acquired radiation field measurements. The performance of the process is assessed on radiation maps obtained from a series of emulated waste processing scenarios. The results demonstrate a Projective Linear Reconstruction (PLR) algorithm can successfully locate a series of point sources to within 2 cm of the true locations, corresponding to resolution enhancements of between 5× and 10×

    Radiological Mapping of Post-disaster Nuclear Environments Using Fixed-wing Unmanned Aerial Systems:A Study from Chernobyl

    Get PDF
    In the immediate aftermath following a large-scale release of radioactive material into the environment, it is necessary to determine the spatial distribution of radioactivity quickly. At present, this is conducted by utilizing manned aircraft equipped with large-volume radiation detection systems. Whilst these are capable of mapping large areas quickly, they suffer from a low spatial resolution due to the operating altitude of the aircraft. They are also expensive to deploy and their manned nature means that the operators are still at risk of exposure to potentially harmful ionizing radiation. Previous studies have identified the feasibility of utilizing unmanned aerial systems (UASs) in monitoring radiation in post-disaster environments. However, the majority of these systems suffer from a limited range or are too heavy to be easily integrated into regulatory restrictions that exist on the deployment of UASs worldwide. This study presents a new radiation mapping UAS based on a lightweight (8 kg) fixed-wing unmanned aircraft and tests its suitability to mapping post-disaster radiation in the Chornobyl Exclusion Zone (CEZ). The system is capable of continuous flight for more than 1 h and can resolve small scale changes in dose-rate in high resolution (sub-20 m). It is envisaged that with some minor development, these systems could be utilized to map large areas of hazardous land without exposing a single operator to a harmful dose of ionizing radiation

    Radiological Identification of Near‐Surface Mineralogical Deposits Using Low‐Altitude Unmanned Aerial Vehicle

    Get PDF
    An ever‐increasing global population and unabating technological growth have resulted in a relentless appetite for mineral resources, namely rare earth elements, fuel minerals and those utilised in electronics applications, with the price of such species continuing to climb. In contrast to more established large‐scale and high‐cost exploration methodologies, this work details the application of novel multi‐rotor unmanned aerial vehicles equipped with miniaturised radiation detectors for the objective of undertaking resource exploration at lower costs, with greater autonomy and at considerably enhanced higher spatial resolutions; utilizing the ore material’s inherent low levels of characteristic radioactivity. As we demonstrate at the former Wooley Mine site in Arizona, USA, a legacy Cu/Fe prospect where the 600 by 275 m ore body (with a maximum deposit depth of 150 m), it is shown that such a fusion of commercially available low‐altitude multi-rotor aerial technology combined with cutting‐edge micro‐electronics and detector materials is capable of accurately assessing the spatial distribution and associated radiogenic signatures of commercially valuable surface/near‐surface ore bodies. This integrated system, deployed at an autonomously controlled consistent survey altitude and using constant grid transects/separations, is shown to be able to delineate the mineral‐containing ore deposits on the site, the location(s) of former mine workings and other surface manifestations. Owing to its advantageous costs alongside its ease of operation and subsequent data‐processing, through the adoption of this system, it is envisaged that less economically developed countries would now possess the means through which to evaluate and appropriately quantify their mineral wealth without the significant initial expenditure needed to equip themselves with otherwise prohibitively expensive technologies

    Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody

    Get PDF
    <b>BACKGROUND:</b> In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo.<p></p> <b>RESULTS:</b> Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134.<p></p> <b>CONCLUSIONS:</b> The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.<p></p&gt

    Beta-amyloid interacts with and activates the longform phosphodiesterase PDE4D5 in neuronal cells to reduce cAMP availability

    Get PDF
    Inhibition of the cyclic-AMP degrading enzyme phosphodiesterase type 4 (PDE4) in the brains of animal models is protective in Alzheimer's disease (AD). We show for the first time that enzymes from the subfamily PDE4D not only colocalize with beta-amyloid (Aβ) plaques in a mouse model of AD but that Aβ directly associates with the catalytic machinery of the enzyme. Peptide mapping suggests that PDE4D is the preferential PDE4 subfamily for Aβ as it possesses a unique binding site. Intriguingly, exogenous addition of Aβ to cells overexpressing the PDE4D5 longform caused PDE4 activation and a decrease in cAMP. We suggest a novel mechanism where PDE4 longforms can be activated by Aβ, resulting in the attenuation of cAMP signalling to promote loss of cognitive function in AD

    Numerical and experimental analysis of the sedimentation of spherical colloidal suspensions under centrifugal force

    Get PDF
    Understanding the sedimentation behaviour of colloidal suspensions is crucial in determining their stability. Since sedimentation rates are often very slow, centrifugation is used to expedite sedimentation experiments. The effect of centrifugal acceleration on sedimentation behaviour is not fully understood. Furthermore, in sedimentation models, interparticle interactions are usually omitted by using the hard-sphere assumption. This work proposes a one-dimensional model for sedimentation using an effective maximum volume fraction, with an extension for sedimentation under centrifugal force. A numerical implementation of the model using an adaptive finite difference solver is described. Experiments with silica suspensions are carried out using an analytical centrifuge. The model is shown to be a good fit with experimental data for 480 nm spherical silica, with the effects of centrifugation at 705 rpm studied. A conversion of data to Earth gravity conditions is proposed, which is shown to recover Earth gravity sedimentation rates well. This work suggests that the effective maximum volume fraction accurately captures interparticle interactions and provides insights into the effect of centrifugation on sedimentation

    Web-based alcohol screening and brief intervention for Māori and non-Māori: the New Zealand e-SBINZ trials

    Get PDF
    BACKGROUND: Hazardous alcohol consumption is a leading modifiable cause of mortality and morbidity among young people. Screening and brief intervention (SBI) is a key strategy to reduce alcohol-related harm in the community, and web-based approaches (e-SBI) have advantages over practitioner-delivered approaches, being cheaper, more acceptable, administrable remotely and infinitely scalable. An efficacy trial in a university population showed a 10-minute intervention could reduce drinking by 11% for 6 months or more among 17-24 year-old undergraduate hazardous drinkers. The e-SBINZ study is designed to examine the effectiveness of e-SBI across a range of universities and among Māori and non-Māori students in New Zealand. METHODS/DESIGN: The e-SBINZ study comprises two parallel, double blind, multi-site, individually randomised controlled trials. This paper outlines the background and design of the trial, which is recruiting 17-24 year-old students from seven of New Zealand's eight universities. Māori and non-Māori students are being sampled separately and are invited by e-mail to complete a web questionnaire including the AUDIT-C. Those who score >4 will be randomly allocated to no further contact until follow-up (control) or to assessment and personalised feedback (intervention) via computer. Follow-up assessment will occur 5 months later in second semester. Recruitment, consent, randomisation, intervention and follow-up are all online. Primary outcomes are (i) total alcohol consumption, (ii) frequency of drinking, (iii) amount consumed per typical drinking occasion, (iv) the proportions exceeding medical guidelines for acute and chronic harm, and (v) scores on an academic problems scale. DISCUSSION: The trial will provide information on the effectiveness of e-SBI in reducing hazardous alcohol consumption across diverse university student populations with separate effect estimates for Māori and non-Māori students. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12610000279022
    corecore