8,483 research outputs found

    Linear laser diode arrays for improvement in optical disk recording for space stations

    Get PDF
    The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated

    Intra-chain correlation functions and shapes of homopolymers with different architectures in dilute solution

    Full text link
    We present results of Monte Carlo study of the monomer-monomer correlation functions, static structure factor and asphericity characteristics of a single homopolymer in the coil and globular states for three distinct architectures of the chain: ring, open and star. To rationalise the results we introduce the dimensionless correlation functions rescaled via the corresponding mean-squared distances between monomers. For flexible chains with some architectures these functions exhibit a large degree of universality by falling onto a single or several distinct master curves. In the repulsive regime, where a stretched exponential times a power law form (de Cloizeaux scaling) can be applied, the corresponding exponents δ\delta and θ\theta have been obtained. The exponent δ=1/ν\delta=1/\nu is found to be universal for flexible strongly repulsive coils and in agreement with the theoretical prediction from improved higher-order Borel-resummed renormalisation group calculations. The short-distance exponents θυ\theta_{\upsilon} of an open flexible chain are in a good agreement with the theoretical predictions in the strongly repulsive regime also. However, increasing the Kuhn length in relation to the monomer size leads to their fast cross-over towards the Gaussian behaviour. Likewise, a strong sensitivity of various exponents θij\theta_{ij} on the stiffness of the chain, or on the number of arms in star polymers, is observed. The correlation functions in the globular state are found to have a more complicated oscillating behaviour and their degree of universality has been reviewed. Average shapes of the polymers in terms of the asphericity characteristics, as well as the universal behaviour in the static structure factors, have been also investigated.Comment: RevTeX 12 pages, 10 PS figures. Accepted by J. Chem. Phy

    Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus).

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model

    Improving the Reliability and Modal Stability of High Power 870 nm AlGaAs CSP Laser Diodes for Applications to Free Space Communication Systems

    Get PDF
    The operating characteristics (power-current, beam divergence, etc.) and reliability assessment of high-power CSP lasers is discussed. The emission wavelength of these lasers was optimized at 860 to 880 nm. The operational characteristics of a new laser, the inverse channel substrate planar (ICSP) laser, grown by metalorganic chemical vapor deposition (MOCVD), is discussed and the reliability assessment of this laser is reported. The highlights of this study include a reduction in the threshold current value for the laser to 15 mA and a degradation rate of less than 2 kW/hr for the lasers operating at 60 mW of peak output power

    Simulated Extragalactic Observations with a Cryogenic Imaging Spectrophotometer

    Get PDF
    In this paper we explore the application of cryogenic imaging spectrophotometers. Prototypes of this new class of detector, such as superconducting tunnel junctions (STJs) and transition edge sensors (TESs), currently deliver low resolution imaging spectrophotometry with high quantum efficiency (70-100%) and no read noise over a wide bandpass in the visible to near-infrared. In order to demonstrate their utility and the differences in observing strategy needed to maximize their scientific return, we present simulated observations of a deep extragalactic field. Using a simple analytic technique, we can estimate both the galaxy redshift and spectral type more accurately than is possible with current broadband techniques. From our simulated observations and a subsequent discussion of the expected migration path for this new technology, we illustrate the power and promise of these devices.Comment: 30 pages, 10 figures, accepted for publication in the Astronomical Journa

    The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field

    Full text link
    The Hubble Deep Field (HDF) is the deepest set of multicolor optical photometric observations ever undertaken, and offers a valuable data set with which to study galaxy evolution. Combining the optical WFPC2 data with ground-based near-infrared photometry, we derive photometrically estimated redshifts for HDF galaxies with J<23.5. We demonstrate that incorporating the near-infrared data reduces the uncertainty in the estimated redshifts by approximately 40% and is required to remove systematic uncertainties within the redshift range 1<z<2. Utilizing these photometric redshifts, we determine the evolution of the comoving ultraviolet (2800 A) luminosity density (presumed to be proportional to the global star formation rate) from a redshift of z=0.5 to z=2. We find that the global star formation rate increases rapidly with redshift, rising by a factor of 12 from a redshift of zero to a peak at z~1.5. For redshifts beyond 1.5, it decreases monotonically. Our measures of the star formation rate are consistent with those found by Lilly et al. (1996) from the CFRS at z 2, and bridge the redshift gap between those two samples. The overall star formation or metal enrichment rate history is consistent with the predictions of Pei and Fall (1995) based on the evolving HI content of Lyman-alpha QSO absorption line systems.Comment: Latex format, 10 pages, 3 postscript figures. Accepted for publication in Ap J Letter

    3D Reconstruction of the Density Field: An SVD Approach to Weak Lensing Tomography

    Full text link
    We present a new method for constructing three-dimensional mass maps from gravitational lensing shear data. We solve the lensing inversion problem using truncation of singular values (within the context of generalized least squares estimation) without a priori assumptions about the statistical nature of the signal. This singular value framework allows a quantitative comparison between different filtering methods: we evaluate our method beside the previously explored Wiener filter approaches. Our method yields near-optimal angular resolution of the lensing reconstruction and allows cluster sized halos to be de-blended robustly. It allows for mass reconstructions which are 2-3 orders-of-magnitude faster than the Wiener filter approach; in particular, we estimate that an all-sky reconstruction with arcminute resolution could be performed on a time-scale of hours. We find however that linear, non-parametric reconstructions have a fundamental limitation in the resolution achieved in the redshift direction.Comment: 11 pages, 6 figures. Accepted for publication in Ap

    Superclustering at Redshift Z=0.54

    Get PDF
    We present strong evidence for the existence of a supercluster at a redshift of z=0.54 in the direction of Selected Area 68. From the distribution of galaxies with spectroscopic redshifts we find that there is a large over-density of galaxies (a factor of four over the number expected in an unclustered universe) within the redshift range 0.530 < z < 0.555. By considering the spatial distribution of galaxies within this redshift range (using spectroscopic and photometric redshifts) we show that the galaxies in SA68 form a linear structure passing from the South-West of the survey field through to the North-East (with a position angle of approximately 35 deg East of North). This position angle is coincident with the positions of the X-ray clusters CL0016+16, RX J0018.3+1618 and a new X-ray cluster, RX J0018.8+1602, centered near the radio source 54W084. All three of these sources are at a redshift of approximately z=0.54 and have position angles, derived from their X-ray photon distributions, consistent with that measured for the supercluster. Assuming a redshift of 0.54 for the distribution of galaxies and a FWHM dispersion in redshift of 0.020 this represents a coherent structure with a radial extent of 31 Mpc, transverse dimension of 12 Mpc, and a thickness of approximately 4 Mpc. The detection of this possible supercluster demonstrates the power of using X-ray observations, combined with multicolor observations, to map the large scale distribution of galaxies at intermediate redshifts.Comment: 12 pages, 3 figures, Latex, aaspp4.sty, accepted for publication in Ap J Letters. Figure 3 and followup observations can be found at http://tarkus.pha.jhu.edu/~ajc/papers/supercluster

    Image Coaddition with Temporally Varying Kernels

    Full text link
    Large, multi-frequency imaging surveys, such as the Large Synaptic Survey Telescope (LSST), need to do near-real time analysis of very large datasets. This raises a host of statistical and computational problems where standard methods do not work. In this paper, we study a proposed method for combining stacks of images into a single summary image, sometimes referred to as a template. This task is commonly referred to as image coaddition. In part, we focus on a method proposed in previous work, which outlines a procedure for combining stacks of images in an online fashion in the Fourier domain. We evaluate this method by comparing it to two straightforward methods through the use of various criteria and simulations. Note that the goal is not to propose these comparison methods for use in their own right, but to ensure that additional complexity also provides substantially improved performance
    • …
    corecore