3,505 research outputs found

    Nonmotion factors which can affect ride quality

    Get PDF
    Data pertaining to nonmotion factors affecting ride quality of transport aircraft were obtained as part of NASA in-house and sponsored research studies carried out onboard commuter-airline and research aircraft. From these data, quantitative effects on passenger discomfort of seat width, seat legroom, change in cabin pressure, and cabin noise are presented. Visual cue effects are also discussed

    Characteristics of future aircraft impacting aircraft and airport compatibility

    Get PDF
    Results are reported of an opinion survey of selected individuals at the decision-making level within the five major manufacturers of transport aircraft in the United States and Europe. Opinions were obtained concerning both possible and probable existence of over 50 compatibility-related characteristics of transport aircraft in use in the years 1990, 2000, and 2010. The maximum size of aircraft is expected to increase, at a roughly uniform rate, to the year 2010 by 85 percent in passengers, 55 percent in airfreighter payload, and 35 percent in gross weight weight. Companion to the expected growth in payloads and gross weight was the identification of probable increases in aircraft geometrical dimensions and component capability, and use of fully double-decked passenger compartments. Wing span will increase considerably more than normally expected to provide wings of higher aspect ratio. New aircraft features coming into probable use include large turboprops, synthetic jet-A fuel, winglets, wake-vortex-reducing devices and laminar flow control. New operational concepts considered probable include steep approaches, high-speed turnoffs, and taxiway towing for the aircraft, plus passenger bypass of the terminal building, expedited handling of belly cargo and an intermodal cargo container for the payloads

    Passenger comfort technology for system decision making

    Get PDF
    Decisions requiring passenger comfort technology were shown to depend on: the relationship between comfort and other factors (e.g., cost, urgency, alternate modes) in traveler acceptance of the systems, serving a selected market require technology to quantify effects of comfort versus offsetting factors in system acceptance. Public predict the maximum percentage of travelers who willingly accept the overall comfort of any trip ride. One or the other of these technology requirements apply to decisions on system design, operation and maintenance

    Outlook for advanced concepts in transport aircraft

    Get PDF
    Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports

    An appraisal for use in reliability analysis of the test and data collection procedures in the manufacture of an inertial guidance system

    Get PDF
    Behavior of first gimbal stabilization loop for reliability analysis of inertial guidance syste

    Passenger ride comfort technology for transport aircraft situations

    Get PDF
    Research in ride comfort and of the resultant technology is overviewed. Several useful relations derived from the technology are: input environments to the vehicle; aircraft operations; and aircraft configurations. Input environments which influence the ride motion environment consist of naturally occuring phenomena such as gusts or turbulence and man generated phenomena such as trailing vortex wakes or runway roughness. Aircraft operations influence ride environments in the form of motions caused by maneuvers, of pressure changes caused by rapid descents, or of too high temperature. Aircraft configurations influence the ride environment by size and shape of external surfaces which generate aerodynamic perturbing forces; by onboard equipment, such as power plant noise and vibrations; and by passive equipment which directly interfaces the passengers such as marginal size seats with limited elbowroom and legroom

    Study of high resolution wind measuring systems. phase i survey, july through september 1964

    Get PDF
    High resolution wind measuring systems using probes, tracers, and sound technique

    Air cargo market outlook and impact via the NASA CLASS project

    Get PDF
    An overview is given of the Cargo/Logistics Airlift Systems Study (CLASS) project which was a 10 man-year effort carried out by two contractor teams, aimed at defining factors impacting future system growth and obtaining market requirements and design guidelines for future air freighters. Growth projection was estimated by two approaches: one, an optimal systems approach with a more efficient and cost effective system considered as being available in 1990; and the other, an evolutionary approach with an econometric behavior model used to predict long term evolution from the present system. Both approaches predict significant growth in demand for international air freighter services and less growth for U.S. domestic services. Economic analysis of air freighter fleet options indicate very strong market appeal of derivative widebody transports in 1990 with little incentive to develop all new dedicated air freighters utilizing the 1990's technology until sometime beyond the year 2000. Advanced air freighters would be economically attractive for a wide range of payload sizes (to 500 metric tons), however, if a government would share in the RD and T costs by virtue of its needs for a slightly modified version of a civil air freighter design (a.g. military airlifter)
    corecore