26 research outputs found

    Development of a testing protocol for oil solidifier effectiveness evaluation

    Get PDF
    Chemical countermeasures for oil spill remediation have to be evaluated and approved by the U.S. Environmental Protection Agency before they may be used to remove or control oil discharges. Solidifiers are chemical agents that change oil from a liquid to a solid by immobilizing the oil and bonding the liquid into a solid carpet-like mass with minimal volume increase. Currently, they are listed as Miscellaneous Oil Spill Control Agent in the National Contingency Plan and there is no protocol for evaluating their effectiveness. An investigation was conducted to test the oil removal efficiency of solidifiers using three newly developed testing protocols. The protocols were qualitatively and quantitatively evaluated to determine if they can satisfactorily differentiate effective and mediocre products while still accounting for experimental error. The repeatability of the three protocols was 15.9, 5.1, and 2.7 %. The protocol with the best performance involved measuring the amount of free oil remaining in the water after the solidified product was removed using an ultraviolet–visible spectrophotometer and it was adopted to study the effect of solidifier-to-oil mass ratio, mixing energy, salinity, and beaker size (i.e., area affected by the spill) on solidifier efficiency. Analysis of Variances were performed on the data collected and results indicated that the beaker size increased spreading, which reduced removal efficiency. Mixing speed appears to impart a ceiling effect with no additional benefit provided by the highest level over the middle level. Salinity was found to be mostly an insignificant factor on performance

    Autonomous water sampler for oil spill response

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gomez-Ibanez, D., Kukulya, A. L., Belani, A., Conmy, R. N., Sundaravadivelu, D., & DiPinto, L. Autonomous water sampler for oil spill response. Journal of Marine Science and Engineering, 10(4), (2022): 526, https://doi.org/10.3390/jmse10040526.A newly developed water sampling system enables autonomous detection and sampling of underwater oil plumes. The Midwater Oil Sampler collects multiple 1-L samples of seawater when preset criteria are met. The sampler has a hydrocarbon-free sample path and can be configured with several modules of six glass sample bottles. In August 2019, the sampler was deployed on an autonomous underwater vehicle and captured targeted water samples in natural oil seeps offshore Santa Barbara, CA, USA.This work was supported by the United States Bureau of Safety and Environmental Enforcement under contract number E18PG00001

    Photochemical oxidation of oil reduced the effectiveness of aerial dispersants applied in response to the Deepwater Horizon spill

    Get PDF
    Author Posting. © American Chemical Society, 2018. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Environmental Science and Technology Letters 5 (2018): 226–231, doi:10.1021/acs.estlett.8b00084.Chemical dispersants are one of many tools used to mitigate the overall environmental impact of oil spills. In principle, dispersants break up floating oil into small droplets that disperse into the water column where they are subject to multiple fate and transport processes. The effectiveness of dispersants typically decreases as oil weathers in the environment. This decrease in effectiveness is often attributed to evaporation and emulsification, with the contribution of photochemical weathering assumed to be negligible. Here, we aim to test this assumption using Macondo well oil released during the Deepwater Horizon spill as a case study. Our results indicate that the effects of photochemical weathering on Deepwater Horizon oil properties and dispersant effectiveness can greatly outweigh the effects of evaporative weathering. The decrease in dispersant effectiveness after light exposure was principally driven by the decreased solubility of photo-oxidized crude oil residues in the solvent system that comprises COREXIT EC9500A. Kinetic modeling combined with geospatial analysis demonstrated that a considerable fraction of aerial applications targeting Deepwater Horizon surface oil had low dispersant effectiveness. Collectively, the results of this study challenge the paradigm that photochemical weathering has a negligible impact on the effectiveness of oil spill response and provide critical insights into the “window of opportunity” to apply chemical dispersants in response to oil spills in sunlit waters.This work was supported, in part, by National Science Foundation Grant OCE-1333148, Gulf of Mexico Research Initiative Grants 015, SA 16-30, the DEEP-C consortium, and the Clark Family Foundation, Inc. EPA funding was provided to R.N.C. from the Oil Spill Liability Trust Fund

    Integrating inland and coastal water quality data for actionable knowledge

    Get PDF
    Water quality measures for inland and coastal waters are available as discrete samples from professional and volunteer water quality monitoring programs and higher-frequency, near-continuous data from automated in situ sensors. Water quality parameters also are estimated from model outputs and remote sensing. The integration of these data, via data assimilation, can result in a more holistic characterization of these highly dynamic ecosystems, and consequently improve water resource management. It is becoming common to see combinations of these data applied to answer relevant scientific questions. Yet, methods for scaling water quality data across regions and beyond, to provide actionable knowledge for stakeholders, have emerged only recently, particularly with the availability of satellite data now providing global coverage at high spatial resolution. In this paper, data sources and existing data integration frameworks are reviewed to give an overview of the present status and identify the gaps in existing frameworks. We propose an integration framework to provide information to user communities through the the Group on Earth Observations (GEO) AquaWatch Initiative. This aims to develop and build the global capacity and utility of water quality data, products, and information to support equitable and inclusive access for water resource management, policy and decision making.Additional co-authors: Anders Knudby, Camille Minaudo, Nima Pahlevan, Ils Reusen, Kevin C. Rose, John Schalles and Maria Tzortzio

    Microbial degradation of Cold Lake Blend and Western Canadian select dilbits by freshwater enrichments

    Get PDF
    Treatability experiments were conducted to determine the biodegradation of diluted bitumen (dilbit) at 5 and 25 °C for 72 and 60 days, respectively. Microbial consortia obtained from the Kalamazoo River Enbridge Energy spill site were enriched on dilbit at both 5 (cryo) and 25 (meso) ºC. On every sampling day, triplicates were sacrificed and residual hydrocarbon concentrations (alkanes and polycyclic aromatic hydrocarbons) were determined by GCMS/MS. The composition and relative abundance of different bacterial groups were identified by 16S rRNA gene sequencing analysis. While some physicochemical differences were observed between the two dilbits, their biodegradation profiles were similar. The rates and extent of degradation were greater at 25 °C. Both consortia metabolized 99.9% of alkanes; however, the meso consortium was more effective at removing aromatics than the cryo consortium (97.5 vs 70%). Known hydrocarbon-degrading bacteria were present in both consortia (Pseudomonas, Rhodococcus, Hydrogenophaga, Parvibaculum, Arthrobacter, Acidovorax), although their relative abundances depended on the temperatures at which they were enriched. Regardless of the dilbit type, the microbial community structure significantly changed as a response to the diminishing hydrocarbon load. Our results demonstrate that dilbit can be effectively degraded by autochthonous microbial consortia from sites with recent exposure to dilbit contamination

    Methods of Oil Detection in Response to the Deepwater Horizon Oil Spill

    No full text
    Detecting oil in the northern Gulf of Mexico following the Deepwater Horizon oil spill presented unique challenges due to the spatial and temporal extent of the spill and the subsequent dilution of oil in the environment. Over time, physical, chemical, and biological processes altered the composition of the oil, further complicating its detection. Reservoir fluid, containing gas and oil, released from the Macondo well was detected in surface and subsurface environments. Oil monitoring during and after the spill required a variety of technologies, including nimble adaptation of techniques developed for non-oil-related applications. The oil detection technologies employed varied in sensitivity, selectivity, strategy, cost, usability, expertise of user, and reliability. Innovative technologies ranging from remote sensing to laboratory analytical techniques were employed and produced new information relevant to oil spill detection, including the chemical characterization, the dispersion effectiveness, and the detection limits of oil. The challenge remains to transfer these new technologies to oil spill responders so that detection of oil following a spill can be improved

    Influence of Extreme Storm Events on West Florida Shelf CDOM Distributions

    Get PDF
    Colored Dissolved Organic Matter (CDOM) distribution and signatures provide vital information about the amount and composition of organic material in aquatic environments. This information is critical for deciphering the sources and biogeochemical pathways of organic carbon, and thus vital to the understanding of carbon cycling and budgets. Waters of the West Florida Shelf are heavily influenced by many river systems on Florida\u27s Gulf Coast that, to the first order, control CDOM distributions on the shelf. Three storm events during 2004 and 2005 (Hurricane Charley, Hurricane Wilma, and a Winter Storm) profoundly altered the typical distribution of CDOM fluorescence and absorption properties on the Southern West Florida Shelf. Seasonal surveys revealed that changes in the underwater light field as a result of major hurricanes and resuspension events are linked closely with a number of factors prior to a storm\u27s passing such as the presence of persistent blooms, rainfall and discharge. Additionally, storm track and wind direction were found to play a significant role in CDOM signatures

    Colored Dissolved Organic Matter in Tampa Bay, Florida

    No full text
    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m− 1) about seven times higher than that in June (∼ 1.11 m− 1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal \u3e 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the year

    Methods of Oil Detection in Response to the Deepwater Horizon Oil Spill

    Get PDF
    Detecting oil in the northern Gulf of Mexico following the Deepwater Horizon oil spill presented unique challenges due to the spatial and temporal extent of the spill and the subsequent dilution of oil in the environment. Over time, physical, chemical, and biological processes altered the composition of the oil, further complicating its detection. Reservoir fluid, containing gas and oil, released from the Macondo well was detected in surface and subsurface environments. Oil monitoring during and after the spill required a variety of technologies, including nimble adaptation of techniques developed for non-oil-related applications. The oil detection technologies employed varied in sensitivity, selectivity, strategy, cost, usability, expertise of user, and reliability. Innovative technologies ranging from remote sensing to laboratory analytical techniques were employed and produced new information relevant to oil spill detection, including the chemical characterization, the dispersion effectiveness, and the detection limits of oil. The challenge remains to transfer these new technologies to oil spill responders so that detection of oil following a spill can be improved
    corecore