1,936 research outputs found
Suntracker balloon flights, flights 3026, 3028, 3029, and 3031
Suntracker balloon flight test instrumentatio
Suntracker balloon flights - 3033, 3034, 3035 and 3037 Final report
Preparations, field operations, and instrumentation for suntracker balloon flight
FCNC Processes from D-brane Instantons
Low string scale models might be tested at the LHC directly by their Regge
resonances. For such models it is important to investigate the constraints of
Standard Model precision measurements on the string scale. It is shown that
highly suppressed FCNC processes like K0- bar K^0 oscillations or leptonic
decays of the D0-meson provide non-negligible lower bounds on both the
perturbatively and surprisingly also non-perturbatively induced string theory
couplings. We present both the D-brane instanton formalism to compute such
amplitudes and discuss various possible scenarios and their constraints on the
string scale for (softly broken) supersymmetric intersecting D-brane models.Comment: 28 pages, 13 figures, reference added, 1 typo corrected, style file
adde
Metastable SUSY Breaking, de Sitter Moduli Stabilisation and K\"ahler Moduli Inflation
We study the influence of anomalous U(1) symmetries and their associated
D-terms on the vacuum structure of global field theories once they are coupled
to N=1 supergravity and in the context of string compactifications with moduli
stabilisation. In particular, we focus on a IIB string motivated construction
of the ISS scenario and examine the influence of one additional U(1) symmetry
on the vacuum structure. We point out that in the simplest one-Kahler modulus
compactification, the original ISS vacuum gets generically destabilised by a
runaway behaviour of the potential in the modulus direction. In more general
compactifications with several Kahler moduli, we find a novel realisation of
the LARGE volume scenario with D-term uplifting to de Sitter space and both
D-term and F-term supersymmetry breaking. The structure of soft supersymmetry
breaking terms is determined in the preferred scenario where the standard model
cycle is not stabilised non-perturbatively and found to be flavour universal.
Our scenario also provides a purely supersymmetric realisation of Kahler moduli
(blow-up and fibre) inflation, with similar observational properties as the
original proposals but without the need to include an extra (non-SUSY)
uplifting term.Comment: 38 pages, 8 figures. v2: references added, minor correction
SUSY Breaking in Local String/F-Theory Models
We investigate bulk moduli stabilisation and supersymmetry breaking in local
string/F-theory models where the Standard Model is supported on a del Pezzo
surface or singularity. Computing the gravity mediated soft terms on the
Standard Model brane induced by bulk supersymmetry breaking in the LARGE volume
scenario, we explicitly find suppressions by M_s/M_P ~ V^{-1/2} compared to
M_{3/2}. This gives rise to several phenomenological scenarios, depending on
the strength of perturbative corrections to the effective action and the source
of de Sitter lifting, in which the soft terms are suppressed by at least
M_P/V^{3/2} and may be as small as M_P/V^2. Since the gravitino mass is of
order M_{3/2} ~ M_P/V, for TeV soft terms all these scenarios give a very heavy
gravitino (M_{3/2} >= 10^8 GeV) and generically the lightest moduli field is
also heavy enough (m >= 10 TeV) to avoid the cosmological moduli problem. For
TeV soft terms, these scenarios predict a minimal value of the volume to be V ~
10^{6-7} in string units, which would give a unification scale of order M_{GUT}
~ M_s V^{1/6} ~ 10^{16} GeV. The strong suppression of gravity mediated soft
terms could also possibly allow a scenario of dominant gauge mediation in the
visible sector but with a very heavy gravitino M_{3/2} > 1 TeV
Sparticle Spectra and LHC Signatures for Large Volume String Compactifications
We study the supersymmetric particle spectra and LHC collider observables for
the large-volume string models with a fundamental scale of 10^{11} GeV that
arise in moduli-fixed string compactifications with branes and fluxes. The
presence of magnetic fluxes on the brane world volume, required for chirality,
perturb the soft terms away from those previously computed in the dilute-flux
limit. We use the difference in high-scale gauge couplings to estimate the
magnitude of this perturbation and study the potential effects of the magnetic
fluxes by generating many random spectra with the soft terms perturbed around
the dilute flux limit. Even with a 40% variation in the high-scale soft terms
the low-energy spectra take a clear and predictive form. The resulting spectra
are broadly similar to those arising on the SPS1a slope, but more degenerate.
In their minimal version the models predict the ratios of gaugino masses to be
M_1 : M_2 : M_3=(1.5 - 2) : 2 : 6, different to both mSUGRA and mirage
mediation. Among the scalars, the squarks tend to be lighter and the sleptons
heavier than for comparable mSUGRA models. We generate 10 fb^{-1} of sample LHC
data for the random spectra in order to study the range of collider
phenomenology that can occur. We perform a detailed mass reconstruction on one
example large-volume string model spectrum. 100 fb^{-1} of integrated
luminosity is sufficient to discriminate the model from mSUGRA and aspects of
the sparticle spectrum can be accurately reconstructed.Comment: 42 pages, 21 figures. Added references and discussion for section 3.
Slight changes in the tex
Astrophysical and Cosmological Implications of Large Volume String Compactifications
We study the spectrum, couplings and cosmological and astrophysical
implications of the moduli fields for the class of Calabi-Yau IIB string
compactifications for which moduli stabilisation leads to an exponentially
large volume V ~ 10^{15} l_s^6 and an intermediate string scale m_s ~
10^{11}GeV, with TeV-scale observable supersymmetry breaking. All K\"ahler
moduli except for the overall volume are heavier than the susy breaking scale,
with m ~ ln(M_P/m_{3/2}) m_{3/2} ~ (\ln(M_P/m_{3/2}))^2 m_{susy} ~ 500 TeV and,
contrary to standard expectations, have matter couplings suppressed only by the
string scale rather than the Planck scale. These decay to matter early in the
history of the universe, with a reheat temperature T ~ 10^7 GeV, and are free
from the cosmological moduli problem (CMP). The heavy moduli have a branching
ratio to gravitino pairs of 10^{-30} and do not suffer from the gravitino
overproduction problem. The overall volume modulus is a distinctive feature of
these models and is an M_{planck}-coupled scalar of mass m ~ 1 MeV and subject
to the CMP. A period of thermal inflation can help relax this problem. This
field has a lifetime ~ 10^{24}s and can contribute to dark matter. It may be
detected through its decays to 2\gamma or e^+e^-. If accessible the e^+e^-
decay mode dominates, with Br(\chi \to 2 \gamma) suppressed by a factor
(ln(M_P/m_{3/2}))^2. We consider the potential for detection of this field
through different astrophysical sources and find that the observed gamma-ray
background constrains \Omega_{\chi} <~ 10^{-4}. The decays of this field may
generate the 511 keV emission line from the galactic centre observed by
INTEGRAL/SPI.Comment: 31 pages, 2 figures; v2. refs adde
- …