1,526 research outputs found

    A Century of Cosmology

    Full text link
    In the century since Einstein's anno mirabilis of 1905, our concept of the Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across to an observed horizon about 30 Gpc across that is only a tiny fraction of an immensely large inflated bubble. The expansion of our knowledge about the Universe, both in the types of data and the sheer quantity of data, has been just as dramatic. This talk will summarize this century of progress and our current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology - Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex with 2 figure

    The Pacific as the world’s greatest theater of bird migration:Extreme flights spark questions about physiological capabilities, behavior, and the evolution of migratory pathways

    Get PDF
    The Pacific Basin, by virtue of its vastness and its complex aeroscape, provides unique opportunities to address questions about the behavioral and physiological capabilities and mechanisms through which birds can complete spectacular flights. No longer is the Pacific seen just as a formidable barrier between terrestrial habitats in the north and the south, but rather as a gateway for specialized species, such as shorebirds, to make a living on hemispherically distributed seasonal resources. This recent change in perspective is dramatic, and the research that underpins it has presented new opportunities to learn about phenomena that often challenge a sense of normal. Ancient Polynesians were aware of the seasonal passage of shorebirds and other landbirds over the Pacific Ocean, incorporating these observations into their navigational “tool kit” as they explored and colonized the Pacific. Some ten centuries later, systematic visual observations and tracking technology have revealed much about movement of these shorebirds, especially the enormity of their individual nonstop flights. This invites a broad suite of questions, often requiring comparative studies with bird migration across other ocean basins, or across continents. For example, how do birds manage many days of nonstop exercise apparently without sleep? What mechanisms explain birds acting as if they possess a Global Positioning System? How do such extreme migrations evolve? Through advances in both theory and tracking technology, biologists are poised to greatly expand the horizons of movement ecology as we know it. In this integrative review, we present a series of intriguing questions about trans-Pacific migrant shorebirds and summarize recent advances in knowledge about migratory behavior operating at temporal scales ranging from immediate decisions during a single flight, to adaptive learning throughout a lifetime, to evolutionary development of migratory pathways. Recent advances in this realm should stimulate future research across the globe and across a broad array of disciplines

    Automatic estimation of harmonic tension by distributed representation of chords

    Full text link
    The buildup and release of a sense of tension is one of the most essential aspects of the process of listening to music. A veridical computational model of perceived musical tension would be an important ingredient for many music informatics applications. The present paper presents a new approach to modelling harmonic tension based on a distributed representation of chords. The starting hypothesis is that harmonic tension as perceived by human listeners is related, among other things, to the expectedness of harmonic units (chords) in their local harmonic context. We train a word2vec-type neural network to learn a vector space that captures contextual similarity and expectedness, and define a quantitative measure of harmonic tension on top of this. To assess the veridicality of the model, we compare its outputs on a number of well-defined chord classes and cadential contexts to results from pertinent empirical studies in music psychology. Statistical analysis shows that the model's predictions conform very well with empirical evidence obtained from human listeners.Comment: 12 pages, 4 figures. To appear in Proceedings of the 13th International Symposium on Computer Music Multidisciplinary Research (CMMR), Porto, Portuga

    Differences in brain activity patterns during creative idea generation between eminent and non-eminent thinkers

    Get PDF
    An influential model of the neural mechanisms of creative thought suggests that creativity is manifested in the joint contributions of the Default Mode Network (DMN; a set of regions in the medial PFC, lateral and medial parietal cortex, and the medial temporal lobes) and the executive networks within the dorsolateral PFC. Several empirical reports have offered support for this model by showing that complex interactions between these brain systems account for individual differences in creative performance. The present study examined whether the engagement of these regions in idea generation is modulated by one\u27s eminence in a creativity-related field. Twenty (n = 20) healthy eminent creators from diverse fields of expertise and a \u27smart\u27 comparison group of sixteen (n = 16) age- and education-matched non-eminent thinkers were administered a creative generation task (an adaptation of the Alternative Uses Task) and a control perceptual task, while undergoing functional magnetic resonance imaging (fMRI). The participants\u27 verbal responses were recorded through a noise-canceling microphone and were later coded for fluency and accuracy. Behavioral and fMRI analyses revealed commonalities between groups, but also distinct patterns of activation in default mode and executive brain regions between the eminent and the non-eminent participants during creative thinking. We interpret these findings in the context of the well-documented contributions of these regions in the generation of creative ideas as modulated, in this study, by participants\u27 creative eminence

    Elemental energy spectra of cosmic rays measured by CREAM-II

    Full text link
    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment CREAM (Cosmic Ray Energetics And Mass). The instrument (CREAM-II) was comprised of detectors based on different techniques (Cherenkov light, specific ionization in scintillators and silicon sensors) to provide a redundant charge identification and a thin ionization calorimeter capable of measuring the energy of cosmic rays up to several hundreds of TeV. The data analysis is described and the individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14 eV. The spectral shape looks nearly the same for all the primary elements and can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen absolute intensity in the energy range 100-800 GeV/n is also measured.Comment: 4 pages, 3 figures, presented at ICRC 2009, Lodz, Polan

    Measurements of cosmic-ray energy spectra with the 2nd CREAM flight

    Full text link
    During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And Mass) balloon experiment collected data for 28 days, measuring the charge and the energy of cosmic rays (CR) with a redundant system of particle identification and an imaging thin ionization calorimeter. Preliminary direct measurements of the absolute intensities of individual CR nuclei are reported in the elemental range from carbon to iron at very high energy.Comment: 4 pages, 3 figures, presented at XV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2008

    Nanohertz Frequency Determination for the Gravity Probe B HF SQUID Signal

    Full text link
    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10^10 resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the Gravity Probe B (GP-B) mission. It was applied to the High Frequency (HF) component of GP-B's Superconducting QUantum Interference Device (SQUID) signal, whose main frequency fz is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/sec resolution in its decay rate were achieved out of a succession of 1.86 second-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.Comment: The following article has been submitted to Review of Scientific Instruments. After it is published, it will be found at (http://rsi.aip.org/

    Energy spectra of cosmic-ray nuclei at high energies

    Full text link
    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to 1014\sim 10^{14} eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E2.66±0.04E^{-2.66 \pm 0.04} power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/nn energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080±0.0250.080 \pm 0.025 (stat.)±0.025 \pm 0.025 (sys.) at \sim 800 GeV/nn, in good agreement with a recent result from the first CREAM flight.Comment: 32 pages, 10 figures. Accepted for publication in Astrophysical Journa
    corecore