16 research outputs found

    Transparent and Flexible Triboelectric Sensing Array for Touch Security Applications

    No full text
    Tactile sensors with large-scale array and high sensitivity is essential for human–machine interaction, smart wearable devices, and mobile networks. Here, a transparent and flexible triboelectric sensing array (TSA) with fingertip-sized pixels is demonstrated by integrating ITO electrodes, FEP film, and signal transmission circuits on an undivided palm-sized polyethylene terephthalate substrate. The sensing pixels can be triggered by the corresponding external contact to induce the electrostatic potential in the transparent electrodes without power consumption, which is individually recognized by the sensor. By testing the response of the pixels, the electrical characterization is systematically investigated. The proposed TSA exhibits excellent durability, independence, and synchronicity, which is able to realize real-time touch sensing, spatial mapping, and motion monitoring. The integrated TSA has great potential for an active tactile system, human–machine interface, wearable electronics, private communication, and advanced security identification

    <i>In Situ</i> Active Poling of Nanofiber Networks for Gigantically Enhanced Particulate Filtration

    No full text
    Enhancing the filtration efficiency of air filtering material without increasing its airflow resistance is a major challenge and of great significance. In this work, we report a type of active-poled nanofiber onto which <i>in situ</i> active poling is applied. It results in significantly enhanced filtration efficiency as well as dust holding capacity while keeping the airflow resistance constant. Owing to the <i>in situ</i> applied electric field, the nanofibers as well as the particulates are polarized. As a result, at a poling voltage of 2 kV, the removal efficiency and the quality factor for PM<sub>2.5</sub> are enhanced by 17% and 130%, respectively. More importantly, the dust holding capacity represents a 3.5-fold enhancement over normal nanofibers. The approach reported in this work has the potential of being practically utilized in air purification purposes because it can bring about not only promoted filtration performance but also lowered noise and reduced power consumption

    Rotating-Sleeve Triboelectric–Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy

    No full text
    Currently, a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) have been hybridized to effectively scavenge mechanical energy. However, one critical issue of the hybrid device is the limited output power due to the mismatched output impedance between the two generators. In this work, impedance matching between the TENG and EMG is achieved facilely through commercial transformers, and we put forward a highly integrated hybrid device. The rotating-sleeve triboelectric–electromagnetic hybrid nanogenerator (RSHG) is designed by simulating the structure of a common EMG, which ensures a high efficiency in transferring ambient mechanical energy into electric power. The RSHG presents an excellent performance with a short-circuit current of 1 mA and open-circuit voltage of 48 V at a rotation speed of 250 rpm. Systematic measurements demonstrate that the hybrid nanogenerator can deliver the largest output power of 13 mW at a loading resistance of 8 kΩ. Moreover, it is demonstrated that a wind-driven RSHG can light dozens of light-emitting diodes and power an electric watch. The distinctive structure and high output performance promise the practical application of this rotating-sleeve structured hybrid nanogenerator for large-scale energy conversion

    Lithium-Ion Batteries: Charged by Triboelectric Nanogenerators with Pulsed Output Based on the Enhanced Cycling Stability

    No full text
    The triboelectric nanogenerator (TENG) has been used to store its generated energy into lithium-ion batteries (LIBs); however, the influences of its pulse current and high voltage on LIB polarization and dynamic behaviors have not been investigated yet. In this paper, it is found that LIBs based on the phase transition reaction of the lithium storage mechanism [LiFePO<sub>4</sub> (LFP) and Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> (LTO) electrodes] are more suitable for charging by TENGs. Thus, the enhanced cycling capacity, Coulombic efficiency (nearly 100% for LTO electrode), and energy storage efficiency (85.3% for the LFP–LTO electrode) are successfully achieved. Moreover, the pulse current has a positive effect on the increase of the Li-ion extraction, reducing the charge-transfer resistance (<i>R</i><sub>ct</sub>) for all studied electrodes as well (LFP, LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub>, LTO, and graphite). The excellent cyclability, high Coulombic, and energy storage efficiencies demonstrated the availability of storing pulsed energy generated by TENGs. This research has provided a promising analysis to obtain an enhanced charging methodology, which provides significant guidance for the scientific research of the LIBs

    Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human–Machine Interaction

    No full text
    Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human–machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human–machine interfacing

    Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human–Machine Interaction

    No full text
    Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human–machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human–machine interfacing

    All-Nanofiber-Based Ultralight Stretchable Triboelectric Nanogenerator for Self-Powered Wearable Electronics

    No full text
    The flexible and stretchable electronics have been considered as next-generation electronics. Stretchable triboelectric nanogenerators (S-TENGs) with both multifunction and comfort have become a hot field of research for wearable electronic devices recently. Here, we designed an all-nanofiber-based, ultralight, S-TENG that could be softly attached on skins for motion energy harvesting and self-powered biomechanical monitoring. The S-TENG consisted of only two nanofiber membranes: a polyvinylidene fluoride nanofiber membrane (PVDFNM) supported by thermoplastic polyurethane nanofiber membrane (TPUNM) was used as the frictional layer, and a multiwalled carbon nanotube (MWCNT) conductive material screen-printed on the TPUNM was used as the electrode layer. Due to the excellent stretchability of TPUNM, the S-TENG could generate electricity under various types of deformation, and regains its original performance after intense mechanical extension, even if it is partially cut or damaged. Owing to the great electronegativity of PVDFNM, the device generated a maximum voltage of 225 V and a current of 4.5 ÎĽA with an electrode area of 6 Ă— 1 cm<sup>2</sup>. The S-TENG has great potential applications in self-powered wearable devices, electronic skins, and smart sensor networks

    Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human–Machine Interaction

    No full text
    Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human–machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human–machine interfacing

    Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human–Machine Interaction

    No full text
    Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human–machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human–machine interfacing

    All-Nanofiber-Based Ultralight Stretchable Triboelectric Nanogenerator for Self-Powered Wearable Electronics

    No full text
    The flexible and stretchable electronics have been considered as next-generation electronics. Stretchable triboelectric nanogenerators (S-TENGs) with both multifunction and comfort have become a hot field of research for wearable electronic devices recently. Here, we designed an all-nanofiber-based, ultralight, S-TENG that could be softly attached on skins for motion energy harvesting and self-powered biomechanical monitoring. The S-TENG consisted of only two nanofiber membranes: a polyvinylidene fluoride nanofiber membrane (PVDFNM) supported by thermoplastic polyurethane nanofiber membrane (TPUNM) was used as the frictional layer, and a multiwalled carbon nanotube (MWCNT) conductive material screen-printed on the TPUNM was used as the electrode layer. Due to the excellent stretchability of TPUNM, the S-TENG could generate electricity under various types of deformation, and regains its original performance after intense mechanical extension, even if it is partially cut or damaged. Owing to the great electronegativity of PVDFNM, the device generated a maximum voltage of 225 V and a current of 4.5 ÎĽA with an electrode area of 6 Ă— 1 cm<sup>2</sup>. The S-TENG has great potential applications in self-powered wearable devices, electronic skins, and smart sensor networks
    corecore