11 research outputs found

    Calculation model for on-way parameters of horizontal wellbore in the superheated steam injection

    No full text
    Due to superheated steam as a pure gas, the ordinary steam model for the calculation of horizontal well-bore parameters based on two phases flow theory isn't applicable to the superheated steam injection process. According to the conservation of mass, conservation of momentum and conservation of energy, a calculation model for on-way parameters of horizontal well-bore in the superheated steam injection considering the steam phase changing is set up. The on-way parameters of temperature, pressure and dryness of a horizontal well injected superheated steam from Kazakhstan Kumsai oilfield is calculated using the model, and the calculation result of the new model is in good agreement with that of the field data, which verifies the effectiveness of the model. Sensitivity analysis indicates that the length to the heel of horizontal well undergoing the steam phase state changing increases as the injection rate or the degree of superheat increases, but the increase extent is not significant when the injection rate is larger than 8 t/h or the degree of superheat is larger than 80 °C. In the permeability distribution pattern that the permeability increases along the horizontal well-bore, steam temperature is decreased at the lowest rate and the length to the heel of horizontal well undergoing the steam phase changing is the longest. Key words: heavy oil, horizontal well, superheated steam, steam phase changing, on-way parameters, calculation model, steam injection rat

    A New Mathematical Model For Heat Radius of Cyclic Superheated Steam Stimulation with Horizontal Wellbore

    No full text
    When superheated steam flows along the horizontal wellbore, it may change to saturated steam at some point of the wellbore. In this paper, to accurately predict the heat radius of cyclic superheated steam stimulation with horizontal wellbore, the distribution of thermophysical properties of superheated steam along the horizontal wellbore is considered. The heating process is divided into 4 stages for superheated steam and 3 stages for saturated steam when the phase change undergoes in the wellbore. On this basis, the mathematical model for heat radius of cyclic superheated steam stimulation with horizontal wellbore was established according to energy conservation principle and Laplace transformation method. The calculation result of the new mathematical model is in good agreement with that of the numerical simulation (CMG STARS) for the same parameters from a specific heavy oil reservoir, which verified the correctness of the new mathematical model. The effect of degree of superheat and the cycle of stimulation are analyzed in detail after the new mathematical model is validated. The results show that the heat radius of superheated zone, steam zone, and hot fluid zone all decrease with horizontal well length and increase with the cycle of stimulation. The higher the degree of superheat is, the farther from the heel of the horizontal wellbore the phase change undergoes. Besides, the radius of superheated zone, steam zone, and hot fluid zone increases with the degree of superheat, but the value increases little at steam zone and hot fluid zone

    An integrated heat efficiency model for superheated steam injection in heavy oil reservoirs

    No full text
    Accurate calculation of heat efficiency in the process of superheated steam injection is important for the efficient development of heavy oil reservoirs. In this paper, an integrated analytical model for wellbore heat efficiency, reservoir heat efficiency and total heat efficiency was proposed based on energy conservation principle. Comparisons have been made between the new model results, measured data and Computer Modelling Group (CMG) results for a specific heavy oil reservoir developed by superheated steam injection, and similarity is observed, which verifies the correctness of the new model. After the new model is validated, the effect of injection rate and reservoir thickness on wellbore heat efficiency and reservoir heat efficiency are analyzed. The results show that the wellbore heat efficiency increases with injection time. The larger the injection rate is, the higher the wellbore heat efficiency. However, the reservoir heat efficiency decreases with injection time and the injection rate has little impact on it. The reservoir thickness has no effect on wellbore heat efficiency, but the reservoir heat efficiency and total heat efficiency increase with the reservoir thickness rising

    An integrated heat efficiency model for superheated steam injection in heavy oil reservoirs

    No full text
    Accurate calculation of heat efficiency in the process of superheated steam injection is important for the efficient development of heavy oil reservoirs. In this paper, an integrated analytical model for wellbore heat efficiency, reservoir heat efficiency and total heat efficiency was proposed based on energy conservation principle. Comparisons have been made between the new model results, measured data and Computer Modelling Group (CMG) results for a specific heavy oil reservoir developed by superheated steam injection, and similarity is observed, which verifies the correctness of the new model. After the new model is validated, the effect of injection rate and reservoir thickness on wellbore heat efficiency and reservoir heat efficiency are analyzed. The results show that the wellbore heat efficiency increases with injection time. The larger the injection rate is, the higher the wellbore heat efficiency. However, the reservoir heat efficiency decreases with injection time and the injection rate has little impact on it. The reservoir thickness has no effect on wellbore heat efficiency, but the reservoir heat efficiency and total heat efficiency increase with the reservoir thickness rising

    Phase behavior and miscible mechanism in the displacement of crude oil with associated sour gas

    No full text
    International audienceThe re-injection of associated sour gas, with high H2S and CO2 content, into the reservoir is proposed to be an effective development method due to its low investment cost and high oil recovery. The aim of this work is to present the phase behavior and miscible mechanism of crude oil displaced by associated sour gas. Based on the equation of state and the phase equilibrium theory, the phase behavior of crude oil mixed with various gases (associated sour gas, H2S, CO2 and CH4) have been analyzed. Then, the miscibility of associated sour gas was determined by calculating its Minimum Miscible Pressure (MMP) and the effect of sour component fraction on miscibility was evaluated. Moreover, a series of numerical simulations modeling 1D slim-tube were conducted using a compositional simulator to study the miscible mechanism in the displacement of crude oil with associated sour gas. The results show that the injection of H2S can reduce the bubble point pressure of crude oil and therefore is beneficial to prevent the crude oil degassing; nevertheless, the injection of CO2 has little effect on it. The miscible ability of associated sour gas decreases as its sour component fraction decreases. It is observed that the crude oil displaced by associated sour gas and sweet gas both show a combined condensing/vaporizing mechanism, with miscible zone in the middle of transition zone. However, the vaporizing-gas drive mechanism is slightly stronger than the condensing-gas drive mechanism during the displacement by associated sour gas while is significantly stronger during the displacement by sweet gas

    An Improved Steam Injection Model with the Consideration of Steam Override

    No full text
    The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, the equation for the reservoir heat efficiency with the consideration of steam override was developed. Next, predicted results of the new model were compared with these of another analytical model and CMG STARS (a mature commercial reservoir numerical simulator) to verify the accuracy of the new mathematical model. Finally, based on the validated model, we analyzed the effects of injection rate, steam quality and reservoir thickness on the reservoir heat efficiency. The results show that the new model can be simplified to the classic model (Marx-Langenheim model) under the condition of the steam override being not taken into account, which means the Marx-Langenheim model is corresponding to a special case of this new model. The new model is much closer to the actual situation compared to the Marx-Langenheim model because of considering steam override. Moreover, with the help of the new model, it is found that the reservoir heat efficiency is not much affected by injection rate and steam quality but significantly influenced by reservoir thickness, and to ensure that the reservoir can be heated effectively, the reservoir thickness should not be too small
    corecore