330 research outputs found

    On Metric Dimension of Functigraphs

    Full text link
    The \emph{metric dimension} of a graph GG, denoted by dim(G)\dim(G), is the minimum number of vertices such that each vertex is uniquely determined by its distances to the chosen vertices. Let G1G_1 and G2G_2 be disjoint copies of a graph GG and let f:V(G1)V(G2)f: V(G_1) \rightarrow V(G_2) be a function. Then a \emph{functigraph} C(G,f)=(V,E)C(G, f)=(V, E) has the vertex set V=V(G1)V(G2)V=V(G_1) \cup V(G_2) and the edge set E=E(G1)E(G2){uvv=f(u)}E=E(G_1) \cup E(G_2) \cup \{uv \mid v=f(u)\}. We study how metric dimension behaves in passing from GG to C(G,f)C(G,f) by first showing that 2dim(C(G,f))2n32 \le \dim(C(G, f)) \le 2n-3, if GG is a connected graph of order n3n \ge 3 and ff is any function. We further investigate the metric dimension of functigraphs on complete graphs and on cycles.Comment: 10 pages, 7 figure

    Geometric Manipulation of Ensembles of Atoms on Atom Chip for Quantum Computation

    Full text link
    We propose a feasible scheme to achieve quantum computation based on geometric manipulation of ensembles of atoms, and analyze it for neutral rubidium atoms magnetically trapped in planoconcave microcavities on an atom chip. The geometric operations are accomplished by optical excitation of a single atom into a Rydberg state in a constant electric field. Strong dipole-dipole interactions and incident lasers drive the dark state of the atom ensembles to undergo cyclic evolutions that realize a universal set of quantum gates. Such geometric manipulation turns out naturally to protect the qubits from the errors induced by non-uniform laser illumination as well as cavity loss. The gate performance and decoherence processes are assessed by numerical simulation.Comment: 17 pages, 14 figure

    Deconfined quantum criticality and emergent symmetry in SrCu2(BO3)2

    Full text link
    The deconfined quantum critical point (DQCP) represents a paradigm shift in theories of quantum matter, presenting a "beyond Landau" scenario for order-order transitions. Its experimental realization, however, has remained elusive. Here we demonstrate by high-pressure 11B NMR measurements on the quantum magnet SrCu2(BO3)2 that the magnetic field induced plaquette-singlet to antiferromagnetic transition above 1.8 GPa is proximate to a DQCP. We find a weak first-order transition between the two phases at a remarkably low temperature, Tc~0.07 K. Above Tc we observe quantum critical scaling at the highest pressure, 2.4 GPa. We explain the low first-order Tc values by a DQCP-induced emergent O(3) symmetry that is broken in the coexistence state. Our findings take the DQCP from a theoretical concept to a concrete experimental platform

    Significant contributions of combustion-related sources to ammonia emissions

    Get PDF
    Atmospheric ammonia (NH3) and ammonium (NH4+) can substantially influence air quality, ecosystems, and climate. NH3 volatilization from fertilizers and wastes (v-NH3) has long been assumed to be the primary NH3 source, but the contribution of combustion-related NH3 (c-NH3, mainly fossil fuels and biomass burning) remains unconstrained. Here, we collated nitrogen isotopes of atmospheric NH3 and NH4+ and established a robust method to differentiate v-NH3 and c-NH3. We found that the relative contribution of the c-NH3 in the total NH3 emissions reached up to 40 ± 21% (6.6 ± 3.4 Tg N yr−1), 49 ± 16% (2.8 ± 0.9 Tg N yr−1), and 44 ± 19% (2.8 ± 1.3 Tg N yr−1) in East Asia, North America, and Europe, respectively, though its fractions and amounts in these regions generally decreased over the past decades. Given its importance, c-NH3 emission should be considered in making emission inventories, dispersion modeling, mitigation strategies, budgeting deposition fluxes, and evaluating the ecological effects of atmospheric NH3 loading

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio

    Self-Cleaning Glass of Photocatalytic Anatase TiO2@Carbon Nanotubes Thin Film by Polymer-Assisted Approach

    Get PDF
    Due to the good photocatalytic activity, the TiO2@CNTs thin film is highly desirable to apply to the self-cleaning glass for green intelligent building. Here, the TiO2@CNTs thin film has been successfully achieved by polymer-assisted approach of an aqueous chemical solution method. The polymer, polyethylenimine, aims to combine the Ti4+ with CNTs for film formation of TiO2@CNTs. The resultant thin film was uniform, highly transparent, and super-hydrophilic. Owing to fast electron transport and effectively hindering electron-hole recombination, the TiO2@CNTs thin film has nearly twofold photocatalytic performance than pure TiO2. The TiO2@CNTs thin films show a good application for self-cleaning glasses

    NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers.

    Get PDF
    Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGCs) in mice, where its precise role is yet unclear. We investigated this in an in vitro model, in which naive pluripotent embryonic stem (ES) cells cultured in basic fibroblast growth factor (bFGF) and activin A develop as epiblast-like cells (EpiLCs) and gain competence for a PGC-like fate. Consequently, bone morphogenetic protein 4 (BMP4), or ectopic expression of key germline transcription factors Prdm1, Prdm14 and Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ES cells. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that after the dissolution of the naive ES-cell pluripotency network during establishment of EpiLCs, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG-binding patterns between ES cells and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ES cells, they show contrasting roles in EpiLCs, as Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1648

    Plant biosystems design research roadmap 1.0

    Get PDF
    Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance
    corecore