3,650 research outputs found

    Anaerobic co-digestion of grass and forbs – Influence of cattle manure or grass based inoculum

    Get PDF
    Anaerobic co-digestion of agricultural by-products or wastes with complementarity characteristics is commonly used to enhance methane yield. This study firstly explores the possibility of co-digesting grass and forb species (white clover, chicory and plantain) differing in nutrient composition in enhancing methane yield. This was examined with two inocula (a cattle manure-based inoculum and a grass-based inoculum) in a batch assay. Results showed that co-digesting grass and forbs synergistically enhanced methane yield potential on average by 31 L kg−1 volatile solids (+11%) and reduced lag phase time by 0.8 day in the grass-based inoculum, but not in the cattle manure-based inoculum. Mixtures containing plantain showed more consistent synergistic effect than chicory. Synergistic effects were attributed to more balanced nutrient composition (especially C/N ratio) in grass-forb mixtures. We demonstrate that anaerobic co-digestion of grass and forbs is feasible for enhancing methane yield, which promotes the utilization of multi-species grasslands for bioenergy production

    Starburst in the Intragroup Medium of Stephan's Quintet

    Full text link
    Based on new ISO mid-infrared observations and ground based HαH_\alpha and near-infrared observations, we report the detection of a bright starburst in the intragroup medium (IGM) of the famous compact group of galaxies Stephan's Quintet (Source A in Fig.1). We demonstrate that this starburst is caused by a collision between a high velocity (δ\deltaV∼\sim 1000 km/sec) intruder galaxy (NGC7318b) and the IGM of the group. While this is the only starburst known today that is induced by a galaxy/cold-intergalactic-medium collision, it provides new constraints to the theory for interaction-induced starbursts, and may hint at a new mechanism for the star formation excess seen in more distant clusters.Comment: 17 pages, 2 PS figures. Accepted by Ap

    Measurement of the spin polarization of the magnetic semiconductor EuS with zero-field and Zeeman-split Andreev reflection spectroscopy

    Full text link
    We report measurements of the spin polarization (\textbf{\textit{P}}) of the concentrated magnetic semiconductor EuS using both zero-field and Zeeman-split Andreev reflection spectroscopy (ARS) with EuS/Al planar junctions. The zero-field ARS spectra are well described by the modified (spin-polarized) BTK model with expected superconducting energy gap and actual measurement temperature (no additional spectral broadening). The fittings consistently yield \textbf{\textit{P}} close to 80% regardless of the barrier strength. Moreover, we performed ARS in the presence of a Zeeman-splitting of the quasiparticle density of states in Al. To describe the Zeeman-split ARS spectra, we develop a theoretical model which incorporates the solution to the Maki-Fulde equations into the modified BTK analysis. The method enables the determination of the magnitude as well as the sign of \textbf{\textit{P}} with ARS, and the results are consistent with those from the zero-field ARS. The experiments extend the utility of field-split superconducting spectroscopy from tunnel junctions to Andreev junctions of arbitrary barrier strengths.Comment: 6 pages, 4 figure

    A Uniform Description of the States Recently Observed at B-factories

    Full text link
    The newly found states Y(4260), Y(4361), Y(4664) and Z±^\pm(4430) stir broad interest in the study of spectroscopy in a typical charmonium scale. The Y(4260) which was observed earlier has been interpreted as hybrid, molecular state, and baryonium, etc. In this note we show for the first time that these new structures, which are hard to be interpreted as charmonium states, can be systematically embedded into an extended baryonium picture. According to this assignment, the so far known characters of these states are understandable. And, in the same framework, we make some predictions for experimenters to measure in the future.Comment: 6 pages in Latex. to appear in J.Phys.

    Surface grinding of carbon fiber-reinforced plastic composites using rotary ultrasonic machining: Effects of tool variables

    Get PDF
    Citation: Wang, H., Ning, F. D., Hu, Y. B., Fernando, P., Pei, Z. J., & Cong, W. L. (2016). Surface grinding of carbon fiber-reinforced plastic composites using rotary ultrasonic machining: Effects of tool variables. Advances in Mechanical Engineering, 8(9), 14. doi:10.1177/1687814016670284Carbon fiber-reinforced plastic composites have many superior properties, including low density, high strength-to-weight ratio, and good durability, which make them attractive in many industries. However, due to anisotropic properties, high stiffness, and high abrasiveness of carbon fibers in carbon fiber-reinforced plastic, high cutting force, high tool wear, and high surface roughness are always caused in conventional machining processes. This article reports an investigation using rotary ultrasonic machining in surface grinding of carbon fiber-reinforced plastic composites in order to develop an effective and high-quality surface grinding process. In rotary ultrasonic machining surface grinding of carbon fiber-reinforced plastic composites, tool selection is of great importance since tool variables will significantly affect output variables. In this work, the effects of tool variables, including abrasive size, abrasive concentration, number of slots, and tool end geometry, on machining performances, including the cutting force, torque, and surface roughness, are experimentally studied. The results show that lower cutting forces and torque are generated by the tool with higher abrasive size, lower abrasive concentration, and two slots. Lower surface roughness is generated by the tool with smaller abrasive size, smaller abrasive concentration, two slots, and convex end geometry. This investigation will provide guides for tool selections during rotary ultrasonic machining surface grinding of carbon fiber-reinforced plastic composites

    A breakthrough dynamic-osmotic membrane bioreactor/nanofiltration hybrid system for real municipal wastewater treatment and reuse.

    Full text link
    This study designed a Dynamic-Osmotic membrane bioreactor/nanofiltration (OsMBR/NF) system for municipal wastewater treatment and reuse. Results indicated that a continuously rotating FO module with 60 RPM in Dynamic-OsMBR system could enhance shear stress and reduce cake layer of foulants, leading to higher flux (50%) compared to Traditional-OsMBR during a 40-operation day. A negligible specific reverse salt flux (0.059 G/L) and a water flux of 2.86 LMH were recorded when a mixture of 0.1 M EDTA-2Na/0.1 M Na2CO3/0.9 mM Triton114 functioned as draw solution (DS). It was found that the Dynamic-OsMBR/NF hybrid system could effectively remove pollutants (∼98% COD, ∼99% PO43-P, ∼93% NH4+-N, > 99% suspended solids) from wastewater. In short, this developed system can be considered a breakthrough technology as it successfully minimizes membrane fouling by shear force, and achieves high water quality for reuse by two membrane- barriers

    Determining 1−−1^{--} Heavy Hybrid Masses via QCD Sum Rules

    Full text link
    The masses of 1−−1^{--} charmonium and bottomonium hybrids are evaluated in terms of QCD sum rules. We find that the ground state hybrid in charm sector lies in mHc=4.12∼4.79m_{H_c}=4.12\sim 4.79 GeV, while in bottom sector the hybrid may situated in mHb=10.24∼11.15m_{H_b} = 10.24\sim 11.15 GeV. Since the numerical result on charmonium hybrid mass is not compatible with the charmonium spectra, including structures newly observed in experiment, we tempt to conclude that such a hybrid does not purely exist, but rather as an admixture with other states, like glueball and regular quarkonium, in experimental observation. However, our result on bottomonium hybrid coincide with the "exotic structure" recently observed at BELLE.Comment: 15 pages, 5 figures, version to appear in J.Phys.
    • …
    corecore