155 research outputs found

    Hybrid III–V/Silicon Nanowires

    No full text
    International audienceSemiconducting nanowires are emerging as a route to combine heavily mismatched materials. The nanowire dimensions facilitate the defect-free integration of the two most powerful semiconductor classes, group IVs and group III-Vs. These combinations may enhance the performance of existing device concepts, and also create new applications. In this chapter we review the recent progress in heteroepitaxial growth of III-V andIVmaterials. We highlight the advantage of using the small nanowire dimensions to facilitate accommodation of the lattice strain at the surface of the structures. Another advantage of the nanowire system is that anti phase boundaries are not formed, as there is only one nucleation site per wire. In this chapter, we will discuss three different heteroepitaxial III-V/Si morphologies, III-V nanowires on group IV substrates, and axial and radial heterojunctions. Advanced analysis techniques are used tocharacterise the quality of the heterointerfaces. Finally, we address potential applications of III-V/Si nanowires

    Charting the low-loss region in Electron Energy Loss Spectroscopy with machine learning

    Get PDF
    Exploiting the information provided by electron energy-loss spectroscopy (EELS) requires reliable access to the low-loss region where the zero-loss peak (ZLP) often overwhelms the contributions associated to inelastic scatterings off the specimen. Here we deploy machine learning techniques developed in particle physics to realise a model-independent, multidimensional determination of the ZLP with a faithful uncertainty estimate. This novel method is then applied to subtract the ZLP for EEL spectra acquired in flower-like WS2_2 nanostructures characterised by a 2H/3R mixed polytypism. From the resulting subtracted spectra we determine the nature and value of the bandgap of polytypic WS2_2, finding EBG=1.6−0.2+0.3 eVE_{\rm BG} = 1.6_{-0.2}^{+0.3}\,{\rm eV} with a clear preference for an indirect bandgap. Further, we demonstrate how this method enables us to robustly identify excitonic transitions down to very small energy losses. Our approach has been implemented and made available in an open source Python package dubbed EELSfitter.Comment: 37 pages, 14 figures. The EELSfitter code is available from https://github.com/LHCfitNikhef/EELSfitte

    Charting the low-loss region in Electron Energy Loss Spectroscopy with machine learning

    Get PDF
    Exploiting the information provided by electron energy-loss spectroscopy (EELS) requires reliable access to the low-loss region where the zero-loss peak (ZLP) often overwhelms the contributions associated to inelastic scatterings off the specimen. Here we deploy machine learning techniques developed in particle physics to realise a model-independent, multidimensional determination of the ZLP with a faithful uncertainty estimate. This novel method is then applied to subtract the ZLP for EEL spectra acquired in flower-like WS2_2 nanostructures characterised by a 2H/3R mixed polytypism. From the resulting subtracted spectra we determine the nature and value of the bandgap of polytypic WS2_2, finding EBG=1.6−0.2+0.3 eVE_{\rm BG} = 1.6_{-0.2}^{+0.3}\,{\rm eV} with a clear preference for an indirect bandgap. Further, we demonstrate how this method enables us to robustly identify excitonic transitions down to very small energy losses. Our approach has been implemented and made available in an open source Python package dubbed EELSfitter

    Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures

    Full text link
    A novel method for the direct correlation at the nanoscale of structural and optical properties of single GaAs nanowires is reported. Nanowires consisting of 100% wurtzite and nanowires presenting zinc-blende/wurtzite polytypism are investigated by photoluminescence spectroscopy and transmission electron microscopy. The photoluminescence of wurtzite GaAs is consistent with a band gap of 1.5 eV. In the polytypic nanowires, it is shown that the regions that are predominantly composed of either zinc-blende or wurtzite phase show photoluminescence emission close to the bulk GaAs band gap, while regions composed of a nonperiodic superlattice of wurtzite and zinc-blende phases exhibit a redshift of the photoluminescence spectra as low as 1.455 eV. The dimensions of the quantum heterostructures are correlated with the light emission, allowing us to determine the band alignment between these two crystalline phases. Our first-principles electronic structure calculations within density functional theory, employing a hybrid-exchange functional, predict band offsets and effective masses in good agreement with experimental results
    • …
    corecore