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Abstract

Exploiting the information provided by electron energy-loss spectroscopy (EELS) re-
quires reliable access to the low-loss region where the zero-loss peak (ZLP) often over-
whelms the contributions associated to inelastic scatterings off the specimen. Here we
deploy machine learning techniques developed in particle physics to realise a model-
independent, multidimensional determination of the ZLP with a faithful uncertainty es-
timate. This novel method is then applied to subtract the ZLP for EEL spectra acquired
in flower-like WS2 nanostructures characterised by a 2H/3R mixed polytypism. From
the resulting subtracted spectra we determine the nature and value of the bandgap of
polytypic WS2, finding EBG = 1.6+0.3

−0.2 eV with a clear preference for an indirect bandgap.
Further, we demonstrate how this method enables us to robustly identify excitonic tran-
sitions down to very small energy losses. Our approach has been implemented and made
available in an open source Python package dubbed EELSfitter.

Keywords: Transmission Electron Microscopy, Electron Energy Loss Spectroscopy, Neural Net-

works, Machine Learning, Transition Metal Dichalcogenides, Bandgap.
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1 Introduction

Electron energy-loss spectroscopy (EELS) within the transmission electron microscope
(TEM) provides a wide range of valuable information on the structural, chemical, and
electronic properties of nanoscale materials. Thanks to recent instrumentation break-
throughs such as electron monochromators [1, 2] and aberration correctors [3], modern
EELS analyses can study these properties with highly competitive spatial and spectral
resolution. A particularly important region of EEL spectra is the low-loss region, defined
by electrons that have lost a few tens of eV, ∆E ∼< 50 eV, following their inelastic in-
teractions with the sample. The analysis of this low-loss region makes possible charting
the local electronic properties of nanomaterials [4], from the characterisation of bulk and
surface plasmons [5], excitons [6], inter- and intra-band transitions [7], and phonons to
the determination of their bandgap and band structure [8].

Provided the specimen is electron-transparent, as required for TEM inspection, the
bulk of the incident electron beam will traverse it either without interacting or restricted
to elastic scatterings with the atoms of the sample’s crystalline lattice. In EEL spectra,
these electrons are recorded as a narrow, high intensity peak centered at energy losses of
∆E ' 0, known as the zero-loss peak (ZLP). The energy resolution of EELS analyses is
ultimately determined by the electron beam size of the system, often expressed in terms
of the full width at half maximum (FWHM) of the ZLP [9]. In the low-loss region, the
contribution from the ZLP often overwhelms that from the inelastic scatterings arising
from the interactions of the beam electrons with the sample. Therefore, relevant signals of
low-loss phenomena such as excitons, phonons, and intraband transitions risk becoming
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drowned in the ZLP tail [10]. An accurate removal of the ZLP contribution is thus crucial
in order to accurately chart and identify the features of the low-loss region in EEL spectra.

In monochromated EELS, the properties of the ZLP depend on the electron energy
dispersion, the monochromator alignment, and the sample thickness [8,11]. The first two
factors arise already in the absence of a specimen (vacuum operation), while the third is
associated to interactions with the sample such as atomic scatterings, phonon excitation,
and exciton losses. This implies that EEL measurements in vacuum can be used for
calibration purposes but not to subtract the ZLP from spectra taken on specimens, since
their shapes will in general differ.

Several approaches to ZLP subtraction [8, 12, 13] have been put forward in the liter-
ature. These are often based on specific model assumptions about the ZLP properties,
in particular concerning its parametric functional dependence on the electron energy loss
∆E, from Lorentzian [14] and power laws [6] to more general multiple-parameter func-
tions [15]. Another approach is based on mirroring the ∆E < 0 region of the spectra,
assuming that the ∆E > 0 region is fully symmetric [16]. More recent studies use inte-
grated software applications for background subtraction [17–20]. These various methods
are however affected by three main limitations. Firstly, their reliance on model assump-
tions such as the choice of fit function introduces a methodological bias whose size is
difficult to quantify. Secondly, they lack an estimate of the associated uncertainties,
which in turn affects the reliability of any physical interpretations of the low loss region.
Thirdly, ad hoc choices such as those of the fitting ranges introduce a significant degree
of arbitrariness in the procedure.

In this study we bypass these limitations by developing a model-independent strategy
to realise a multidimensional determination of the ZLP with a faithful uncertainty esti-
mate. Our approach is based on machine learning (ML) techniques originally developed
in high-energy physics to study the quark and gluon substructure of protons in particle
collisions [21–24]. It is based on the Monte Carlo replica method to construct a probability
distribution in the space of experimental data and artificial neural networks as unbiased
interpolators to parametrise the ZLP. The end result is a faithful sampling of the proba-
bility distribution in the ZLP space which can be used to subtract its contribution to EEL
spectra while propagating the associated uncertainties. One can also extrapolate the pre-
dictions from this ZLP parametrisation to other TEM operating conditions beyond those
included in the training dataset.

This work is divided into two main parts. In the first one, we construct a ML model
of ZLP spectra acquired in vacuum, which is able to accommodate an arbitrary number
of input variables corresponding to different operation settings of the TEM. We demon-
strate how this model successfully describes the input spectra and we assess its extrap-
olation capabilities for other operation conditions. In the second part, we construct a
one-dimensional model of the ZLP as a function of ∆E from spectra acquired on two
different specimens of tungsten disulfide (WS2) nanoflowers characterised by a 2H/3R
mixed polytypism [25]. The resulting subtracted spectra are used to determine the value
and nature of the WS2 bandgap in these nanostructures as well as to map the properties
of the associated exciton peaks appearing in the ultra-low loss region.

This paper is organized as follows. First of all, in Sect. 2 we review the main features
of EELS and present the WS2 nanostructures that will be used as proof of concept of our
approach. In Sect. 3 we describe the machine learning methodology adopted to model the
ZLP features. Sects. 4 and 5 contain the results of the ZLP parametrisation of spectra
acquired in vacuum and in specimens respectively, which in the latter case allows us
to probe the local electronic properties of the WS2 nanoflowers. Finally in Sect. 6 we
summarise and outline possible future developments. Our results have been obtained
with an open-source Python code, dubbed EELSfitter, whose installation and usage
instructions are described in Appendix A.
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Figure 2.1. Left: schematic representation of the STEM-EELS setup. A magnetic prism is
used to deflect the electron beam after it has crossed the sample, allowing the distribution of
energy losses ∆E to be recorded with a spectrometer. Right: a representative low-loss EEL
spectrum acquired on a WS2 nanoflower [25] with the inset displaying the corresponding ZLP.

2 EELS analyses and TMD nanostructures

In this work, we will apply our machine learning method to the study of the low-loss
EELS region of a specific type of WS2 nanostructures presented in [25], characterised
by a flower-like morphology and a 2H/3R mixed polytypism. WS2 is a member of the
transition metal dichalcogenide (TMD) family, which in turn belongs to a class of materials
known as two-dimensional, van der Waals, or simply layered materials. These materials
are characterised by the remarkable property of being fully functional down to a single
atomic layer. In order to render the present work self-contained and accessible to a wider
audience, here we review the basic concepts underlying the EELS technique, and then
present the main features of the WS2 nanoflowers that will be studied in the subsequent
sections.

2.1 EELS and its ZLP in a nutshell

Electron energy loss spectroscopy is a TEM-based method whereby an electron-transparent
sample is illuminated by a beam of energetic electrons. Subsequent to the crossing of the
specimen, the scattered electron beam is focused by a magnetic prism towards a spectrom-
eter where the distribution of electron energy losses ∆E can be recorded. The schematic
illustration of a typical EELS setup is shown in the left panel of Fig. 2.1. EEL spec-
tra can be recorded either in the Scanning Transmission Electron Microscopy (STEM)
mode or in the conventional TEM (c-TEM) setup. Thanks to recent progress in TEM in-
strumentation and data acquisition, state-of-the-art EELS analyses benefit from a highly
competitive energy (spectral) resolution combined with an unparalleled spatial resolution.

EELS spectra can be approximately divided into three main regions. The first is
the zero-loss region, centered around ∆E = 0 and containing the contributions from
both elastic scatterings as well as those from electrons that have not interacted with the
sample. This region is characterised by the strong and narrow ZLP which dominates
over the contribution from inelastic scatterings. The second region is the low-loss region,
defined for energy losses ∆E ∼< 50 eV, which contains information about several important
features such as plasmons, excitons, phonons, and intra-band transitions. Of particular
relevance in this context is the ultra-low loss region, characterised by ∆E ' few eV. There,
the contributions of the ZLP and those from inelastic interactions become comparable.
The regime for which ∆E ∼> 50 eV is then known as the core-loss region and provides
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compositional information on the materials that constitute the specimen.
The right panel of Fig. 2.1 displays a representative EELS spectrum in the region

∆E ≤ 35 eV, recorded in one of the WS2 nanoflowers of [25]. The inset displays the
ZLP, illustrating how nearby ∆E ' 0 its size is larger than the contribution from the
inelastic scatterings off the sample by several orders of magnitude. Carefully disentangling
these two contributions is essential for the physical interpretation of EEL spectra in the
ultra-low-loss region.

The magnitude and shape of the ZLP intensity is known to depend not only on the
specific values of the electron energy loss ∆E, but also on other operation parameters of
the TEM such as the electron beam energy Eb, the exposure time texp, the aperture width,
and the use of a monochromator. Since it is not possible to compute the dependence of
the ZLP on ∆E and the other operation parameters from first principles, reliance on
specific models seems to be unavoidable. This implies that one cannot measure the ZLP
for a given operating condition, for instance a high beam voltage of 200 kV, and expect
to reproduce the ZLP intensity distribution associated to different conditions, such as a
lower beam voltage of 60 kV, without introducing model assumptions.

Several attempts to describe the ZLP distribution have reported some success at pre-
dicting the main intensity of the peak, but in the tails discrepancies are as large as several
tens of percent [26]. The standard method for background subtraction is to fit a power
law to the tails, however this approach is not suitable in many circumstances [27–30].
Further, even for nominally identical operating conditions, the intensity of the ZLP will
in general vary due to e.g. external perturbations such as electric or magnetic fields [12],
the stability of the microscope and spectrometer electronics [31], the local environment
(possibly exposed to mechanical, pressure and temperature fluctuations) and spectral
aberrations [13]. Any robust statistical model for the ZLP should thus account for this
irreducible source of uncertainties.

2.2 TMD materials and WS2 nanoflowers

In this work we will apply our ZLP parametrisation strategy to a novel class of recently
presented WS2 nanostructures known as nanoflowers [25]. WS2 belongs to the TMD class
of layered materials together with e.g. MoS2 and WSe2. TMD materials are of the form
MX2, where M is a transition metal atom (such as Mo or W) and X a chalcogen atom
(such as S, Se, or Te). The characteristic crystalline structure of TMDs is such that one
layer of M atoms is sandwiched between two layers of X atoms.

The local electronic structure of TMDs strongly depends on the coordination between
the transition metal atoms, giving rise to an array of remarkable electronic and magnetic
properties [32]. Furthermore, the properties of this class of materials vary significantly
with their thickness, for instance MoS2 exhibits an indirect bandgap in the bulk form which
becomes direct at the monolayer level [33]. The tunability of their electronic properties
and the associated potential applications in nano-electronics make TMD materials highly
attractive for fundamental research.

As for other TMD materials, WS2 adopts a layered structure by stacking atomic layers
of S-W-S in a sandwich-like configuration. Although the interaction between adjacent
layers is a weak Van der Waals force, the dependence of the interlayer interactions on the
stacking order of WS2 can be significant. Therefore, modulating the stacking arrangement
of WS2 layers (as well as their relative orientation) represents a promising handle to tailor
the resulting local electronic properties. WS2 also exhibits a marked thickness dependence
of its properties, with an indirect-to-direct bandgap transition when going from bulk to
bilayer or monolayer form. The effects of this transition are manifested for example as
enhanced photoluminescence in monolayer WS2, whereas greatly suppressed emission is
observed in the corresponding bulk form [34]. Further applications of this material include
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Figure 2.2. Left: low-magnification TEM image of the WS2 nanoflowers grown on top of
a holey Si/SiN substrate. Right: the magnification of a representative petal of a nanoflower,
where the black region corresponds to the vacuum (no substrate) and the difference in contrast
indicates terraces of varying thickness.

storage of hydrogen and lithium for batteries [35].
A low-magnification TEM image of the WS2 nanoflowers is displayed in the left panel

of Fig. 2.2. These nanostructures are grown directly on top of a holey TEM substrate.
The right panel shows the magnification of a representative petal of a nanoflower, where
the difference in contrast indicates terraces of varying thickness. Note that the black
region corresponds to the vacuum, that is, without substrate underneath. These WS2

nanoflowers exhibit a wide variety of thicknesses, orientations and crystalline structures,
therefore representing an ideal laboratory to correlate structural morphology in WS2 with
electronic properties at the nanoscale. Importantly, these nanoflowers are characterised
by a mixed crystalline structure, in particular 2H/3R polytypism. This implies that
different stacking types tend to coexist, affecting the interlayer interactions within WS2

and thus modifying the resulting physical properties [36]. One specific consequence of such
variations in the stacking patterns is the appearance of spontaneous electrical polarization,
leading to modifications of the electronic band structure and thus of the bandgap [37,38].

As mentioned above, one of the most interesting properties of WS2 is that when the
material is thinned down to a single monolayer its indirect bandgap of EBG ' 1.4 eV
switches to a direct bandgap of approximately EBG ' 2.1 eV. It has been found that
the type and magnitude of the WS2 bandgap depends quite sensitively on the crystalline
structure and the number of layers that constitute the material. In Table 2.1 we collect
representative results for the determination of the bandgap energy EBG and its type in
WS2, obtained by means of different experimental and theoretical techniques. For each
reference we indicate separately the bulk results and those obtained at the monolayer
level. We note that for the latter case there is a fair spread of results in the value of EBG,
reflecting the challenges of its accurate determination.

3 A neural network determination of the ZLP

In this section we present our strategy to parametrise and subtract in a model-independent
manner the zero-loss peak that arises in the low-loss region of EEL spectra by means of
machine learning. As already mentioned, our strategy follows the NNPDF approach [44]
originally developed in the context of high-energy physics for studies of the quark and
gluon substructure of the proton [45]. The NNPDF approach has been successfully ap-
plied, among others, to the determination of the unpolarised [21–24,46] and polarised [47]
parton distribution functions of protons, nuclear parton distributions [48, 49], and the
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Reference Thickness EBG (eV) bandgap type Technique

[39] bulk 1.4± 0.07 indirect Gate-voltage dependence

[40]
monolayer 2.14 direct

Gate-voltage dependence
bulk 1.40 indirect

[41]
monolayer 2.03± 0.03 direct

Density Functional Theory
bulk 1.32± 0.03 indirect

[42]
monolayer 1.76± 0.03 direct

Absorption edge coefficient fitting
bulk 1.35 indirect

[43] monolayer 2.21± 0.3 direct Bethe-Salpeter equation (BSE)

Table 2.1. Representative results for the determination of the bandgap energy EBG and its
type in WS2, obtained by means of different experimental and theoretical techniques. For each
reference we indicate separately the bulk results and those obtained at the monolayer level.

fragmentation functions of partons into neutral and charged hadrons [50,51].
We note that recently several applications of machine learning to transmission elec-

tron microscopy analyses in the context of material science have been presented, see
e.g. [52–58]. Representative examples include the automated identification of atomic-
level structural information [56], the extraction of chemical information and defect clas-
sification [57], and spatial resolution enhancement by means of generative adversarial
networks [58]. To the best of our knowledge, this is the first time that neural networks
are used as unbiased background-removal interpolators and combined with Monte Carlo
sampling to construct a faithful estimate of the model uncertainties.

In this section first of all we discuss the parametrisation of the ZLP in terms of neural
networks. We then review the Monte Carlo replica method used to estimate and propagate
the uncertainties from the input data to physical predictions. Subsequently, we present
our training strategy both in case of vacuum and of sample spectra, and discuss how one
can select the optimal values of the hyper-parameters that appear in the model.

3.1 ZLP parametrisation

To begin with we note that, without any loss of generality, the intensity profile associated
to a generic EEL spectrum may be decomposed as

IEEL(∆E) = IZLP(∆E) + Iinel(∆E) , (3.1)

where ∆E is the measured electron energy loss; IZLP is the zero-loss peak distribution
arising both from instrumental origin and from elastic scatterings; and Iinel(∆E) contains
the contributions from the inelastic scatterings off the electrons and atoms in the specimen.
As illustrated by the representative example of Fig. 2.1, there are two limits for which
one can cleanly disentangle the two contributions. First of all, for large enough values of
∆E then IZLP vanishes and thus IEEL → Iinel. Secondly, in the ∆E ' 0 limit all emission
can be associated to the ZLP such that IEEL → IZLP. In this work we are interested in
the ultra-low-loss region, where IZLP and Iinel become of the comparable magnitude.

Our goal is to construct a parametrisation of IZLP based on artificial neural networks,
which we denote by I

(mod)
ZLP , by means of which one can extract the inelastic contributions

by subtracting the ZLP background model to the measured intensity spectra,

Iinel(∆E) ' IEEL(∆E)− I(mod)
ZLP (∆E) , (3.2)
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which enables us to exploit the physical information contained in Iinel in the low-loss
region. Crucially, we aim to faithfully estimate and propagate all the relevant sources of
uncertainty associated both to the input data and to methodological choices.

As discussed in Sect. 2.1, the ZLP depends both on the value of the electron energy loss
∆E as well as on the operation parameters of the microscope, such as the electron beam
energy Eb and the exposure time texp. Therefore, we want to construct a multidimensional
model which takes all relevant variables as input. This means that in general Eq. (3.2)
must be written as

Iinel(∆E) ' IEEL(∆E,Eb, texp, . . .)− I(mod)
ZLP (∆E,Eb, texp, . . .) , (3.3)

where we note that the subtracted spectra should depend only on ∆E but not on the
microscope operation parameters. Ideally, the ZLP model should be able to accomodate
as many input variables as possible. Here we parametrise I

(mod)
ZLP by means of multi-layer

feed-forward artificial neural networks [59], that is, we express our ZLP model as

I
(mod)
ZLP (∆E,Eb, texp, . . .) = ξ

(nl)
1 (∆E,Eb, texp, . . .) , (3.4)

where ξ
(nl)
1 denotes the activation state of the single neuron in the last of the nl layers of

the network when the nI inputs {∆E,Eb, texp, . . .} are used. The weights and thresholds

{ω(l)
ij , θ

(l)
i } of this neural network model are then determined from the maximization of the

model likelihood by means of supervised learning and non-linear regression from a suitable
training dataset. This type of neural networks benefit from the ability to parametrise
multidimensional input data with arbitrarily non-linear dependencies: even with a single
hidden layer, a neural network can reproduce arbitrary functional dependencies provided
it has a large enough number of neurons.

A schematic representation of our model is displayed in Fig. 3.1. The input is an nI

array containing ∆E and the rest of operation variables of the microscope, and the output
is the value of the intensity of the ZLP distribution associated to those input variables. We
adopt an nI-10-15-5-1 architecture with three hidden layers, for a total number of 289 (271)
free parameters for nI = 3 (nI = 1) to be adjusted by the optimization procedure. We
use a sigmoid activation function for the three hidden layers and a ReLU for the final one.
The choice of ReLU for the final layer guarantees that our model for the ZLP is positive-
definite, as required by general physical considerations. We have adopted a redundant
architecture to ensure that the ZLP parametrisation is sufficiently flexible, and we avoid
over-fitting by means of a suitable regularisation strategy described in Sect. 3.3.

3.2 Uncertainty propagation

We discussed in Sect. 2.1 how even for EEL spectra taken at nominally identical operation
conditions of the microscope, in general the resulting ZLP intensities will differ. Further,
there exist a large number of different NN configurations, each representing a different
functional form for I

(mod)
ZLP which provide an equally valid description of the input data.

To estimate these uncertainties and propagate them to physical predictions, we use here
the Monte Carlo replica method. The basic idea is to exploit the available information on
experimental measurements (central values, uncertainties, and correlations) to construct
a sampling of the probability density in the space of the data, which by means of the NN
training is then propagated to a probability density in the space of IZLP models.

Let us assume that we have ndat independent measurements of the ZLP intensity, for
different or the same values of the input parameters collectively denoted as {zi}:

I
(exp)
ZLP,i ({zi}) = I

(exp)
ZLP,i (∆Ei, Eb,i, texp,i, . . .) , i = 1, . . . , ndat . (3.5)
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Figure 3.1. Schematic representation of our neural network model for the ZLP, Eq. (3.4). The
input is an nI -dimensional array containing ∆E and other operation variables of the microscope
such as Eb and texp. The output is the predicted value of the intensity of the zero-loss peak
distribution associated to those specific input variables. The architecture is chosen to be nI -10-
15-5-1, with sigmoid activation functions in all layers except for a ReLU in the output neuron.

From these measurements, we can generate a large sample of artificial data points that
will be used as training inputs for the neural nets by means of the Monte Carlo replica
method. In such approach, one generates Nrep Monte Carlo replicas of the original data
points by means of a multi-Gaussian distribution, with the central values and covariance
matrices taken from the input measurements,

I
(art)(k)
ZLP,i = I

(exp)
ZLP,i + r

(stat,k)
i σ

(stat)
i +

nsys∑
j=1

r
(sys,k)
i,j σ

(sys)
i,j , ∀i , k = 1, . . . , Nrep , (3.6)

where σ
(stat)
i and σ

(sys)
i,j represent the statistical and systematic uncertainties (the latter

divided into nsys fully point-to-point correlated sources) and {r(k)
i } are Gaussianly dis-

tributed random numbers. The values of {r(k)
i } are generated with a suitable correlation

pattern to ensure that averages over the set of Monte Carlo replicas reproduce the original
experimental covariance matrix, namely〈(

I
(art)(k)
ZLP,i −

〈
I

(art)
ZLP,i

〉
rep

)(
I

(art)(k)
ZLP,j −

〈
I

(art)
ZLP,j

〉
rep

)〉
rep

= cov(exp) (IZLP,i, IZLP,j) , (3.7)

where averages are evaluated over the Nrep replicas that compose the sample. We thus
note that each k-th replica contains as many data points as the original set.

In our case, the information on experimental correlations is not accessible and thus we
assume that there is a single source of point-by-point uncorrelated systematic uncertainty,
denoted as σ

(exp)
i , which is estimated as follows. The input measurements will be composed

in general on subsets of EEL spectra taken with identical operation conditions. Assume
that for a specific set of operation conditions we have Nsp of such spectra. Since the
values of ∆E will be different in each case, first of all we uniformise a common binning
in ∆E with ndat entries. Then we evaluate the total experimental uncertainty in one of
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Figure 3.2. Comparison between the original experimental central values I
(exp)
ZLP,i (left) and the

corresponding uncertainties σ
(exp)
i (right panel) with the results of averaging over a sample of

Nrep Monte Carlo replicas generated by means of Eq. (3.6), for different values of Nrep.

these bins as

σ
(exp)
i =

(
1

Nsp − 1

Nsp∑
l=1

(
I

(exp),l
ZLP,i −

〈
I

(exp)
ZLP,i

〉
Nsp

))1/2

, i = 1, . . . , ndat , (3.8)

that is, as the standard deviation over the Nsp spectra. This uncertainty is separately
evaluated for each set of microscope operation conditions for which data available. In the
absence of correlations, Eqns. (3.6) and (3.7) simplify to

I
(art)(k)
ZLP,i = I

(exp)
ZLP,i + r

(tot,k)
i σ

(exp)
i , ∀i , k = 1, . . . , Nrep . (3.9)

and 〈(
I

(art)(k)
ZLP,i −

〈
I

(art)
ZLP,i

〉
rep

)(
I

(art)(k)
ZLP,j −

〈
I

(art)
ZLP,j

〉
rep

)〉
rep

= σ
(exp)
i σ

(exp)
j δij , (3.10)

since the experimental covariance matrix is now diagonal. Should in the future correlations
became available, it would be straightforward to extend our model to that case.

The value of the number of generated MC replicas, Nrep, should be chosen such that the
set of replicas accurately reproduces the probability distribution of the original training
data. To verify that this is the case, Fig. 3.2 displays a comparison between the original
experimental central values I

(exp)
ZLP,i and the corresponding total uncertainties σ

(exp)
i with

the results of averaging over a sample of Nrep Monte Carlo replicas generated by means of
Eq. (3.6) for different number of replicas. We find that Nrep = 500 is a value that ensures
that both the central values and uncertainties are reasonably well reproduced, and we
adopt it in what follows.

3.3 Training strategy

The training of the neural network model for the ZLP peak differs between the cases of
EEL spectra taken on vacuum, where by construction IEEL(∆E) = I

(mod)
ZLP (∆E), and for

spectra taken on specimens1. In the latter case, as indicated by Eq. (3.2), in order to
avoid biasing the results it is important to ensure that the model is trained only on the
region of the spectra where the ZLP dominates over the inelastic scatterings. We now
describe the training strategy that is adopted for these two cases.

1Actually, EEL spectra taken in the vacuum but close enough to the sample might still receive inelastic
contributions from the specimen. In this work, when we use vacuum spectra, we consider exclusively those
acquired reasonably far from the surfaces of the analysed nanostructures.
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Training on vacuum spectra. For each of the Nrep generated Monte Carlo replicas,
we train an independent neural network as described in Sect. 3.1. The parameters of the
neural network {θ(k)} (its weights and thresholds) are determined from the minimisation
of a figure of merit (the cost function of the model) defined as

E(k)
(
{θ(k)}

)
=

1

ndat

ndat∑
i=1

(
I

(art)(k)
ZLP,i − I

(mod)
ZLP,i

(
{θ(k)}

)
σ

(exp)
i

)2

, (3.11)

which is the χ2 per data point obtained by comparing the k-th replica for the ZLP intensity
with the corresponding model prediction for the values {θ(k)} of its weights and thresholds.
In order to speed up the neural network training process, prior to the optimisation all
inputs and outputs are scaled to lie between [0.1, 0.9] before being fed to the network.
This preprocessing facilitates that the neuron activation states will typically lie close to
the linear region of the sigmoid activation function.

The contribution to the figure of merit from the input experimental data, Eq. (3.11),
needs in general to be complemented with that of theoretical constraints on the model.
For instance, when determining nuclear parton distributions [49], one needs to extend
Eq. (3.11) with Lagrange multipliers to ensure that both the A = 1 proton boundary
condition and the cross-section positivity are satisfied. In the case at hand, our model
for the ZLP should implement the property that IZLP(∆E) → 0 when |∆E| → ∞, since
far from ∆E ' 0 the contribution from elastic scatterings and instrumental broadening
is completely negligible. In order to implement this constraint, we add npd pseudo-data
points to the training dataset and modify the figure of merit Eq. (3.11) as follows

E(k)
(
{θ(k)}

)
→ E(k)

(
{θ(k)}

)
+ λ

npd∑
i′=1

(
I

(mod)
ZLP,i′

(
{θ(k)}

))2

, (3.12)

where λ is a Lagrange multiplier whose value is tuned to ensure that the IZLP(∆E)→ 0
condition is satisfied without affecting the description of the training dataset. The pseudo-
data is chosen to lie in the region [∆E

(min)
pd ,∆E

(max)
pd ] (and symmetrically for energy gains).

The value of ∆E
(min)
pd can be determined automatically by evaluating the ratio Rsig

between the central experimental intensity and the total uncertainty in each data point,

Rsig(∆Ei) ≡
I

(exp)
ZLP (∆Ei)

σ(exp)(∆Ei)
, (3.13)

which corresponds to the statistical significance for the i-th bin of ∆E to differ from the
null hypothesis (zero intensity) taking into account the experimental uncertainties. For
sufficiently large energy losses one finds that Rsig(∆E) ∼< 1, indicating that one would be
essentially fitting statistical noise. In order to avoid such a situation and only fit data that
is different from zero within errors, we determine ∆E

(min)
pd from the condition Rsig ' 1.

We then maintain the training data in the region ∆E ≤ ∆E
(min)
pd and the pseudo-data

points are added for [∆E
(min)
pd ,∆E

(max)
pd ]. The value of ∆E

(max)
pd can be chosen arbitrarily

and can be as large as necessary to ensure that IZLP(∆E)→ 0 as |∆E| → ∞.
We note that another important physical condition on the ZLP model, namely its

positivity (since in EEL spectra the intensity is just a measure of the number of counts
in the detector for a given value of the energy loss), is automatically satisfied given that
we adopt a ReLU activation function for the last layer.

In this work we adopt the TensorFlow library [60] to assemble the architecture il-
lustrated in Fig. 3.1. Before training, all weights and biases are initialized in a non-
deterministic order by the built-in global variable initializer. The optimisation of the
figure of merit Eq. (3.12) is carried out by means of stochastic gradient descent (SGD)
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combined with backpropagation, specifically by means of the Adam minimiser. The hyper-
parameters of the optimisation algorithm such as the learning rate have been adjusted to
ensure proper learning is reached in the shortest amount of time possible.

Given that we have a extremely flexible parametrisation, one should be careful to avoid
overlearning the input data. Here over-fitting is avoided by means of the following cross-
validation stopping criterion. We separate the input data into training and validation
subsets, with a 80%/20% splitting which varies randomly for each Monte Carlo replica.
We then run the optimiser for a very large number of iterations and store both the state
of the network and the value of the figure of merit Eq. (3.11) restricted to the validation

dataset, E
(k)
val (which is not used for the training). The optimal stopping point is then

determined a posteriori for each replica as the specific network configuration that leads
to the deepest minimum of E

(k)
val . The number of epochs should be chosen high enough to

reach the optimal stopping point for each replica. In this work we find that 40k epochs
are sufficient to be able to identify these optimal stopping points. This corresponds to
a serial running time of t ' 60 seconds per replica when running the optimization on a
single CPU for 500 datapoints.

Once the training of the Nrep neural network models for the ZLP has been carried out,
we gauge the overal fit quality of the model by computing the χ2 defined as

χ2 =
1

ndat

ndat∑
i=1

I(exp)
ZLP,i −

〈
I

(mod)
ZLP,i

〉
rep

σ
(exp)
i


2

, (3.14)

which is the analog of Eq. (3.14) now comparing the average model prediction to the
original experimental data values. A value χ2 ' 1 indicates that a satisfactory description
of the experimental data, within the corresponding uncertainties, has been achieved. Note
that in realistic scenarios χ2 can deviate from unity, for instance when some source of
correlation between the experimental uncertainties has been neglected, or on the contrary
when the total experimental error is being underestimated.

Training on sample spectra. The training strategy for the case of EEL spectra ac-
quired on specimens (rather than on vacuum) must be adjusted to account for the fact
that the input data set, Eq. (3.1), receives contributions both from the ZLP and from in-
elastic scatterings. To avoid biasing the ZLP model, only the former contributions should
be included in the training dataset.

We can illustrate the situation at hand with the help of a simple toy model for the
low-loss region of the EEL spectra, represented in Fig. 3.3. Let us assume for illustration
purposes that the ZLP is described by a Gaussian distribution,

IZLP(∆E) ∝ exp

(
−∆E2

σ2
ZLP

)
, (3.15)

with a standard deviation of σZLP = 0.3 eV, and that the contribution from the inelastic
scatterings arising from the sample can be approximated in the low-loss region by

Iinel(∆E) ∝ (∆E − EBG)b , (3.16)

with EBG = 1.5 eV and b = 1/2. The motivation for the latter choice will be spelled out
in Sect. 5. We display the separate contributions from IZLP and Iinel, as well as their sum,
with the inset showing the values of the corresponding derivatives, dI/d∆E.

While simple, the toy model of Fig. 3.3 is actually general enough so that one can draw
a number of useful considerations concerning the relation between IZLP and Iinel that will
apply also in realistic spectra:
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Figure 3.3. A toy model for the EEL spectrum and its derivative (in the inset). We display
the separate contributions from IZLP and Iinel as well as their sum (total). We indicate the two
regions used for the model training (I and III), while as discussed in the text the neural network
predictions are extrapolated to region II, defined by ∆EI ≤ ∆E ≤ ∆EII.

• The ZLP intensity, IZLP(∆E), is a monotonically decreasing function and thus its
derivative is always negative.

• The first local minimum of the total intensity, dIEEL/d∆E|∆Emin
= 0, corresponds

to a value of ∆E for which the contribution from the inelastic emissions is already
sizable.

• The value of ∆E for which Iinel starts to contribute to the total spectrum corresponds
to the position where the derivatives of the in-sample and in-vacuum intensities start
to differ. We note that a direct comparison between the overal magnitude of the
sample and vacuum ZLP spectra is in general not possible, as explained in Sect. 2.1.

These considerations suggest that when training the ML model on EEL spectra recorded
on samples, the following categorisation should de adopted:

1. For energy losses ∆E ≤ ∆EI (region I), the model training proceeds in exactly the
same way as for the vacuum case via the minimisation of Eq. (3.11).

2. For ∆E ≥ ∆EII (region III), we use instead Eq. (3.12) without the contribution
from the input data, since for such values of ∆E one has that Iinel � IZLP. In other
words, the only information that the region III provides on the model is the one
arising from the implementation of the constraint that IZLP(∆E →∞)→ 0.

3. The EELS measurements in region II, defined by ∆EI ≤ ∆E ≤ ∆EII, are excluded
from the training dataset, given that in this region the contribution to IEEL coming
from Iinel is significant. There the model predictions are obtained from an interpo-
lation of the associated predictions obtained in the regions I and III.
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The categorisation introduced in Fig. 3.3 relies on two hyper-parameters of the model,
∆EI and ∆EII, which need to be specified before the training takes place. They should
satisfy ∆EI ≤ ∆Emin and ∆EII ≥ ∆Emin, with ∆Emin being the position of the first
local minimum of IEEL. As indicated by the toy spectra of Fig. 3.3, a suitable value for
∆EI would be somewhat above the onset of the inelastic contributions, to maximise the
amount of training data while ensuring that IEEL is still dominated by IZLP.

The optimal value of ∆EI can be determined as follows. We evaluate the ratio between
the derivative of the intensity distribution acquired on the specimen over the same quantity
recorded in vacuum,

R(j)
der(∆E) ≡

〈
dI

(exp)(j)
EEL (∆E)/d∆E

dI
(exp)(j′)
EEL (∆E)/d∆E

〉
N ′

sp

, (3.17)

where j′ labels one of the N ′sp vacuum spectra and the average is taken over all available
values of j′. This ratio allows one to identify a suitable value of ∆EI by establishing for
which energy losses the shape (rather than the absolute value) of the intensity distributions
recorded on the specimen starts to differ significantly from their vacuum counterparts. A
sensible choice of ∆EI could for instance be given by Rder(∆EI) ' 0.8, for which deriva-
tives differ at the 20% level. Note also that the leftmost value of the energy loss satisfying
Rder(∆E) = 0 in Eq. (3.17) corresponds to the position of the first local minimum.

Concerning the choice of the second hyper-parameter ∆EII, following the discussion
above one can identify ∆EII = ∆E

(min)
pd , which is determined by requiring that Eq. (3.13)

satisfies Rsig(∆Ei) ∼< 1 and thus correspond to the value of ∆E where statistical uncer-
tainties drown the signal intensity.

4 ZLP parametrisation from vacuum spectra

We now move to discuss the application of the strategy presented in the previous section to
the parametrisation of ZLP spectra acquired in vacuum. Applying our model to this case
has a two-fold motivation. First of all, we aim to demonstrate that the model is sufficiently
flexible to effectively reproduce the input EELS measurements for a range of variations of
the operation parameters of the microscope. Second, it allows one to provide a calibrated
prediction useful for the case of the in-sample measurements. Such calibration is necessary
since, as explained in Sect. 3.3, some of the model hyper-parameters are determined by
comparing intensity shape profiles between spectra taken in vacuum and in sample.

In this section, first of all we present the input dataset and motivate the choice of
training settings and model hyperparameters. Then we validate the model training by
assessing the fit quality. Lastly, we study the dependence of the model output in its
various input variables, extrapolate its predictions to new operation conditions, and study
the dependence of the model uncertainties upon restricting the training dataset.

4.1 Training settings

In Table 4.1 we collect the main properties of the EELS spectra acquired in vacuum
to train the neural network model. For each set of spectra, we indicate the exposure
time texp, the beam energy Eb, the number of spectra Nsp recorded for these operation
conditions, the number ndat of bins in each spectrum, the range in electron energy loss
∆E, and the average full width at half maximum (FWHM) evaluated over the Nsp spectra
with the corresponding standard deviation. The spectra listed on Table 4.1 were acquired
with a ARM200F Mono-JEOL microscope equipped with a GIF continuum spectrometer,
see also Methods. We point out that since here we are interested in the low-loss region,
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Set texp (ms) Eb (keV) Nsp ndat ∆Emin (eV) ∆Emax (eV) FWHM (meV)

1 100 200 15 2048 -0.96 8.51 47± 7

2 100 60 7 2048 -0.54 5.59 50± 4

3 10 200 6 2048 -0.75 5.18 26± 3

4 10 60 6 2048 -0.40 4.78 34± 2

Table 4.1. Summary of the main properties of the EELS spectra acquired in vacuum to train
the neural network model. For each set of spectra, we indicate the exposure time texp, the
beam energy Eb, the number of spectra Nsp recorded for these operation conditions, the number
ndat of bins in each spectrum, the range in electron energy loss ∆E, and the average FWHM
evaluated over the Nsp spectra with the corresponding standard deviation

∆Emax does not need to be too large, and anyway the asymptotic ∆E behaviour of the
model is fixed by the constraint implemented by Eq. (3.12).

The energy resolution of these spectra, quantified by the average value of their FWHM,
ranges from 26 meV to 50 meV depending on the specific operation conditions of the mi-
croscope, with an standard deviation between 2 and 7 meV. The value of the FWHM
varies only mildly with the value of the beam energy Eb but grows rapidly for spectra
collected with larger exposure times texp. A total of almost 7 × 104 independent mea-
surements will be used for the ZLP model training on the vacuum spectra. As will be
highlighted in Sects. 4.3 and 4.4, one of the advantages of our ZLP model is that it can
extrapolate its predictions to other operation conditions beyond the specific ones used for
the training and listed in Table 4.1.

Following the strategy presented in Sect. 3, first of all we combine the Nsp spectra
corresponding to each of the four sets of operation conditions and determine the statistical
uncertainty associated to each energy loss bin by means of Eq. (3.8). For each of the

training sets, we need to determine the value of ∆E
(min)
pd (= ∆EII) that defines the range

for which we add the pseudo-data that imposes the correct ∆E →∞ limit of the model.
This value is fixed by the condition that ratio between the central experimental value of
the EELS intensity and its corresponding uncertainty, Eq. (3.13), satisfies Rsig ' 1.

Fig. 4.1 displays this ratio for the four combinations of texp and Eb listed in Table 4.1.
The vertical dashed lines indicate the values of ∆E for which Rsig becomes smaller than
unity. For larger ∆E, the EELS spectra become consistent with zero within uncertain-
ties and can thus be discarded and replaced by the pseudo-data constraints. The total
uncertainty of the pseudo-data points is then chosen to be

σ
(pd)
j =

1

10
I

(exp)
EEL

(
∆E = ∆E

(min)
pd

)
, j = 1, . . . , Npd . (4.1)

The factor of 1/10 is found to be suitable to ensure that the constraint is enforced without

distorting the training to the experimental data. We observe from Fig. 4.1 that ∆E
(min)
pd

depends the operation conditions, with ∆E
(min)
pd ' 200 meV for texp = 10 ms and ' 900

meV for 100 ms, roughly independent on the value of the beam energy Eb.
The input experimental measurements listed in Table 4.1 are used to generate a sample

of Nrep = 500 Monte Carlo replicas and to train an individual neural network to each of
these replicas. The end result of the procedure is a set of model replicas,

I
(mod)(k)
ZLP (∆E,Eb, texp) , k = 1, . . . , Nrep , (4.2)

which can be used to provide a prediction for the intensity of the ZLP for arbitrary values
of ∆E, Eb, and texp. Eq (4.2) provides the sought-for representation of the probability
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Figure 4.1. The ratio Rsig(∆E) between the central experimental value of the EELS intensity
distribution and its corresponding uncertainty, Eq. (3.13). Results are shown for the four com-
binations of texp and Eb listed in Table 4.1. The vertical dashed lines mark the values of ∆E
for which Rsig ' 1, which indicates when the data is dominated by statistical noise.

density in the space of ZLP models. By means of this sample of replicas, one can evalu-
ate statistical estimators such as averages, variances, and correlations (as well as higher
moments) as follows:

〈
I

(mod)
ZLP ({z1})

〉
=

1

Nrep

Nrep∑
k=1

I
(mod)(k)
ZLP ({z1}) , (4.3)

σ
(mod)
IZLP

({z1}) =

(
1

Nrep − 1

Nrep∑
k=1

(
I

(mod)(k)
ZLP −

〈
I

(mod)
ZLP

〉))1/2

, (4.4)

ρ ({z1}, {z2}) =

〈
I

(mod)
ZLP ({z1})I(mod)

ZLP ({z2})
〉
−
〈
I

(mod)
ZLP ({z1})

〉〈
I

(mod)
ZLP ({z2})

〉
σ

(mod)
IZLP

({z1})σ(mod)
IZLP

({z2})
, (4.5)

where as in the previous section {zl} denotes a possible set of input variables for the
model, here {zl} = (∆El, Eb,l, texp,l).

4.2 Fit quality

We would like now to evaluate the overall fit quality of the neural network model and
demonstrate that it is flexible enough to describe the available input datasets. In Table 4.2
we indicate the values of the final χ2 per data point, Eq. (3.14), as well as the average
values of the cost function Eq. (3.11) evaluated over the training and validation subsets,
for each of the four sets of spectra listed in Table 4.1 as well as for the total dataset. We
recall that for a satisfactory training one expects χ2 ' 1 and 〈Etr〉 ' 〈Eval〉 ' 2 [59]. From
the results of this table we find that, while our values are consistent with a reasonably
good training, somewhat lower values than expected are obtained, for instance χ2

tot ' 0.8
for the total dataset. This suggests that correlations between the input data points might
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Set χ2 〈Etr〉 〈Eval〉

1 1.00 1.70 1.97

2 0.73 1.41 1.77

3 0.70 1.39 1.80

4 0.60 1.20 1.76

Total 0.77 1.47 1.85

Table 4.2. The values of the χ2 per data point, Eq. (3.14), as well as the average values of the
cost function Eq. (3.11) over the training 〈Etr〉 and validation 〈Eval〉 subsets, for each of the four
sets of spectra listed in Table 4.1 as well as for the total dataset used in the present analysis.

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
2

0.0

0.5

1.0

1.5

2.0

2.5

2 distribution (vacuum spectra)
training
validation

Figure 4.2. The distribution of the χ2 per data point evaluated separately for the training and
validation sets over the Nrep = 500 replicas trained on the spectra listed in Table 4.1.

be partially missing, since neglecting them often results into a moderate overestimate of
the experimental uncertainties.

Then Fig. 4.2 displays separately the χ2 distributions evaluated for the training and
validation sets of the Nrep = 500 replicas of the sample trained on the spectra listed in
Table 4.1. Note that the training/validation partition differs at random for each replica.
The χ2

tr distribution peaks at χ2
tr ' 0.7, indicating that a satisfactory model training has

been achieved, but also that the errors on the input data points might have been slightly
overestimated. We emphasize that the stopping criterion for the neural net training
adopted here never considers the absolute values of the error function and determines
proper learning entirely from the global minima of E

(k)
val . From Fig. 4.2 we also observe

that the validation distribution peaks at a slighter higher value, χ2
val ' 1, and is broader

that its corresponding training counterpart. These results confirm both that a satisfactory
model training that prevents overlearning has been achieved as well as an appropriate
estimate of the statistical uncertainties associated to the original EEL spectra.
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Figure 4.3. Top: the central value and 68% confidence level uncertainty band for the ZLP
model as a function of electron energy loss ∆E evaluated using Eqns. (4.3) and (4.4). We
display results corresponding to three different values of Eb and for both texp = 10 ms (left)
and texp = 100 ms (right panel). Note that no training data with Eb = 120 keV has been used
and thus our prediction in that case arises purely from the model interpolation. Bottom: the
corresponding relative uncertainty as a function of ∆E for each of the three values of Eb.

4.3 Dependence on the electron energy loss

Having demonstrated that our neural network model provides a satisfactory description
of the input EEL spectra, we now present its predictions for specific choices of the input
parameters. First of all, we investigate the dependence of the results as a function of
the electron energy loss. Fig. 4.3 displays the central value and 68% confidence level
uncertainty band for the ZLP model as a function of electron energy loss ∆E evaluated
using Eqns. (4.3) and (4.4). We display results corresponding to three different values of Eb

and for both texp = 10 ms and 100 ms. We emphasize that no measurements with Eb = 120
keV have been used in the training and thus our prediction in that case arises purely from
the model interpolation. It is interesting to note how both the overall normalisation and
the shape of the predicted ZLP depend on the specific operating conditions.

In the bottom panels of Fig. 4.3 we show the corresponding relative uncertainties as
a function of ∆E for each of the three values of Eb. Recall that in this work we allow for
non-Gaussian distributions and thus the central value is the median of the distribution
and the error band in general will be asymmetric. In the case of the texp = 10 ms results,
we see how the model prediction at Eb = 120 keV typically exhibits larger uncertainties
than the predictions for the two values of Eb for which we have training data. In the case
of texp = 100 ms instead, the model predictions display very similar uncertainties for the
three values of Eb, which furthermore depend only mildly on ∆E. One finds there that
the uncertainties associated to the ZLP model are ' 20% for |∆E| ∼< 100 meV.

For the purpose of the second part of this work, it is important to assess how the
model results are modified once a subset of the data points are excluded from the fit.
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Figure 4.4. The relative uncertainty in the model predictions for IEEL(∆E) as a function of the
energy loss for Eb = 200 keV and texp = 10 ms (left) and 100 ms (right panel). We show results
for three different cases: without any cut in the training dataset, and where the data points
with ∆E ≥ ∆Ecut are removed from the training dataset for two different values of ∆Ecut. The
same pseudo-data points that enforce IEEL(∆E)→ 0 are present in all three cases.

As illustrated in Fig. 3.3, when training the model on sample spectra, the region defined
by with ∆EI ≤ ∆E ≤ ∆EII will be removed from the training dataset to avoid the
contamination from the inelastic contributions. To emulate the effects of such cut, Fig. 4.4
displays the relative uncertainty in the model predictions for IZLP(∆E) as a function of
the energy loss for Eb = 200 keV and texp = 10 ms and 100 ms. We show results for
three different cases: first of all, one without any cut in the training dataset, and then
for two cases where data points with ∆E ≥ ∆Ecut are removed from the training dataset.
We consider two values of ∆Ecut, namely 50 meV and 100 meV, indicated with vertical
dash-dotted lines. In both cases, data points are removed up until ∆E = 800 meV. The
pseudo-data points that enforce the IEEL(∆E)→ 0 condition are present in all three cases
in the region 800 meV ≤ ∆E ≤ 1 eV.

From this comparison one can observe how the model predictions become markedly
more uncertain once a subset of the training data is cut away, as expected due to the
effect of the information loss. While for the cut ∆Ecut = 100 meV the increase in model
uncertainty is only moderate as compared with the baseline fit where no cut is performed
(since for this value of ∆E uncertainties are small to begin with), rather more dramatic
effects are observed for a value of the cut ∆Ecut = 50 meV. This comparison highlights
how ideally we would like to keep as many data points in the training set for the ZLP
model, provided of course one can verify that the possible contributions to the spectra
related to inelastic scatterings from the sample can be neglected.

4.4 Dependence on beam energy and exposure time

As indicated in Table 4.1, the training dataset contains spectra taken at two values of
the electron beam energy, Eb = 60 keV and 200 keV. The left panel of Fig. 4.5 displays
the predictions for the FWHM of the zero-loss peak (and its corresponding uncertainty)
as a function of the beam energy Eb for two values of the exposure time, texp = 10 ms
and 100 ms. The vertical dashed lines indicate the two values of Eb for which spectra
are part of the training dataset. This comparison illustrates how the model uncertainty
differs between the data region (near Eb = 60 keV and 200 keV), the interpolation region
(for Eb between 60 and 200 keV), and the extrapolation regions (for Eb below 60 keV
and above 200 keV). In the case of texp = 100 ms for example, we observe that the model
interpolates reasonably well between the measured values of Eb and that uncertainties
increase markedly in the extrapolation region above Eb = 200 keV.

From this comparison one can also observe how as expected the uncertainty in the
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Figure 4.5. The model predictions for the FWHM of the zero-loss peak with its corresponding
uncertainty as a function of the beam energy Eb for two values of the exposure time (left panel)
and as a function of texp for two values of Eb (right panel). The vertical dashed lines indicate the
values of the corresponding microscope operation parameter for which we have training data.

prediction for the FWHM of the ZLP is the smallest close to the values of Eb for which
one has training data. The uncertainties increase but only in a moderate way in the
interpolation region, indicating that the model can be applied to reliably predict the
features of the ZLP for other values of the electron energy beam (assuming that all other
operation conditions of the microscope are unchanged). The errors then increase rapidly
in the extrapolation region, which is a characteristic (and desirable) feature of neural
network models. Indeed, as soon as the model departs from the data region there exists
a very large number of different functional form models for IZLP(∆E) that can describe
equally well the training dataset, and hence a blow up of the extrapolation uncertainties
is generically expected.

In the same way as for the case of the electron beam energy Eb, while our ZLP model
was trained on data with only exposure times of texp = 10 and 100 ms, it can be used
to reliably inter- and extrapolate to other values of texp. The right panel of Fig. 4.5
displays the same comparison as in the left one now as a function of texp for Eb = 60
keV and Eb = 200 keV. We observe that the FWHM increases approximately in a linear
manner with the exposure time, indicating that lower values of texp allow for an improved
spectral resolution, and that the model predictions are approximately independent of Eb.
Similarly to the predictions for varying beam energies, also for the exposure time the
uncertainties grow bigger as the value of this parameter deviates more from the training
inputs, specially for large values of texp.

All in all, we conclude that the predictions of the ML model trained on vacuum
spectra behave as they ought to: the smallest uncertainties correspond to the parameter
values that are included in the training dataset, while the largest uncertainties arise in the
extrapolation regions when probing regions of the parameter space far from those present
in the training set.

5 Mapping low-loss EELS in polytypic WS2

Following the discussion of the vacuum ZLP analysis, we now present the application
of our machine learning strategy to parametrise the ZLP arising in spectra recorded on
specimens, specifically for EELS measurements acquired in different regions of the WS2

nanoflowers presented in Sect. 2.2. The resulting ZLP parametrisation will be applied to
isolate the inelastic contribution in each spectrum. We will use these subtracted spectra
first to determine the bandgap type and energy value from the behaviour of the onset
region and second to identify excitonic transitions at very low energy losses.
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Set texp (ms) Eb (keV) Nsp Ndat ∆Emin (eV) ∆Emax (eV) FWHM (meV)

A 1 60 6 1918 -4.1 45.5 470± 10

B 190 60 10 2000 -0.9 9.1 87± 5

Table 5.1. Same as Table 4.1 for the EEL spectra taken on specimens A and B. The location
on the WS2 nanoflowers where each spectra has been recorded is indicated in Fig. 5.1.

In this section we begin by presenting the training dataset, composed by two groups
of EEL spectra recorded in thick and thin regions of the WS2 nanoflowers respectively.
Then we discuss the subtraction procedure, the choice of hyper-parameters, and the error
propagation to the physical predictions. The resulting subtracted spectra provide the
information required to extract the value and type of the bandgap and to characterise
excitonic transitions for different regions of these polytypic WS2 nanostructures.

5.1 Training dataset

Low-magnification TEM images and the corresponding spectral images of two representa-
tive regions of the WS2 nanoflowers, denoted as sample A and B respectively, are displayed
in Fig. 5.1. These spectral images have been recorded in the regions marked by a green
square in the associated TEM images, and contain an individual EEL spectrum in each
pixel. We indicate the specific locations where EEL spectra have been recorded, includ-
ing the in-vacuum measurements acquired for calibration purposes. Note that in sample
B the differences in contrast are related to the material thickness, with higher contrast
corresponding to thinner regions.

These two samples are characterised by rather different structural morphologies. While
sample A is composed by a relatively thick region of WS2, sample B corresponds to a region
where thin petals overlap between them. In other words, sample A is composed by bulk
WS2 while in sample B some specific regions could be rather thinner, down to the few
monolayers level. This thickness information has been be determined by means of the
Digital Micrograph software.

One of the main goals of this study is demonstrating that our ZLP-subtraction method
exhibits a satisfactory performance for spectra taken with different microscopes and oper-
ation conditions. With this motivation, the EELS measurements acquired on specimens
A and B have been obtained varying both the microscopes and their settings. Specifi-
cally, the TEM and EELS measurements acquired in specimen A are based on a JEOL
2100F microscope with a cold field-emission gun and equipped with an aberration cor-
rector, operated at 60 kV and where a Gatan GIF Quantum was used for the EELS
analysis. The corresponding measurements on specimen B were recorded instead using a
JEM ARM200F monochromated microscope operated at 60 kV and equipped with a GIF
quantum ERS. See Methods for more details.

In Table 5.1 we collect the most relevant properties of the spectra collected in the
locations indicated in Fig. 5.1 using the same format as in Table 4.1. As we just mentioned,
the spectra from samples A and B have been acquired with different microscopes and thus
features of the ZLP such as the FWHM are expected to be different. From this table one
can observe how the ZLP for the spectra acquired on sample A exhibit a FWHM about
five times larger as compared to those of sample B. This difference in energy resolution
can be understood from the fact that the EELS spectra from sample B, unlike those from
sample A, were recorded with a TEM equipped with monochromator.

In the following we will present results for representative spectra corresponding to
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Figure 5.1. Low-magnification TEM images (left) and the corresponding spectral images (right
panels) of two different regions of the WS2 nanoflowers, denoted as sample A (upper) and sample
B (lower panels) respectively. The spectral images have been recorded in the regions marked by
a green square in the associated TEM images, and contain an individual EEL spectrum in each
pixel. We indicate the locations where representative EEL spectra have been selected. In the
left panel of sample B, the difference in contrast is correlated to the material thickness, with
higher contrast indicating thinner regions of the nanostructure. The morphological differences
between the two samples are discussed in the text.

specific choices of the locations indicated in Fig. 5.1. The full set of recorded spectra is
available within EELSfitter, the code used to produce the results of this analysis, and
whose installation and usage instructions are summarised in Appendix A.

5.2 Subtraction procedure

In Table 5.2 we collect the mean value and uncertainty of the first local minimum, ∆E|min.
averaged over the spectra corresponding to samples A and B from Fig. 5.1. The location of
the first minimum is relatively stable among all the spectra belonging to a given set. This
indicates that the onset of the inelastic contributions Iinel does not change significantly as
we move between different regions of the sample. We also indicate there the corresponding
values of the hyper-parameters ∆EI and ∆EII defined in Fig. 3.3. Recall that only the
data points with ∆E ≤ ∆EI are used for the training of the neural network model. The
model training is performed for a range of ∆EI values, subject to the condition that
∆EI ≤ ∆Emin, to validate the stability of the results. The optimal value of ∆EI is
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Set ∆E|min (eV) ∆EI (eV) ∆EII (eV)

A 2.70± 0.06 1.8 12

B 1.80± 0.04 1.4 6

Table 5.2. The mean value and uncertainty of the first local minima, ∆E|min, averaged over
the spectra corresponding to samples A and B from Fig. 5.1. We also indicate the corresponding
values of the hyper-parameters ∆EI and ∆EII defined in Fig. 3.3 used for the training of the
neural network model.

determined by the condition that Eq. (3.17) satisfies R(j)
der(∆E) ' 0.9, indicating that the

shape of the intensity profile for the sample spectra differs by more than 10% as compared
to their vacuum counterparts.

In the region ∆E ≥ ∆EII, the training set includes only the pseudo-data that im-
plements the IZLP(∆E) → 0 constraint. The values for ∆EII were determined from the
spectra recorded in vacuum following the same procedure as explained in Sect. 4, based
on requiring Rsig(∆EII) ∼< 1. We note that the values of ∆EII found now are significantly
higher than the ones obtained in Fig. 4.1 for the vacuum case. This difference could be
ascribed to the fact that the vacuum spectra from samples A and B were recorded in
proximity to the sample so that the influence of the specimen is still partially felt.

The end result of the neural network training described in Sect. 3.3 is a set of Nrep =
500 replicas parametrising the zero-loss peak,

I
(mod)(k)
ZLP (∆E) , k = 1, . . . , Nrep . (5.1)

Taking into account that we have Nsp individual spectra in each sample, the ZLP sub-
traction is performed individually for each Monte Carlo replica,

I
(exp)(j,k)
inel (∆E) ≡ I

(exp)(j)
EEL (∆E)− I(mod)(k)

ZLP (∆E) , ∀ Nrep , j = 1, . . . , Nsp , (5.2)

from which statistical estimators can be evaluated. For instance, the mean value for our
model prediction for the j-th spectrum can be evaluated by averaging over the replicas,

〈
I

(exp)(j)
inel

〉
(∆E) =

1

Nrep

Nrep∑
k=1

I
(exp)(j,k)
inel (∆E) , j = 1, . . . , Nsp , (5.3)

and likewise for the corresponding uncertainties and correlation coefficients. For large
values of ∆E, the model prediction reduces to the original spectra, since in that region
the ZLP contribution vanishes,

I
(exp)(j,k)
inel (∆E � ∆EI)→ I

(exp)(j)
EEL (∆E) , ∀ j, k . (5.4)

For very small values of the energy loss, the contribution to the total spectra from
inelastic scatterings is negligible and thus the subtracted model prediction Eq. (5.2) should
vanish. However, this will not be the case in general since the neural network model is
trained on the Nsp ensemble of spectra, rather that just on individual ones, and thus the
expected ∆E → 0 behaviour will only be achieved within uncertainties rather than at
the level of central values. To achieve the desired ∆E → 0 limit, we apply a matching
procedure as follows. We introduce another hyper-parameter, ∆E0 < ∆EI, such that one
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has for the k-th ZLP replica associated to the j-th spectrum the following behaviour:

I
(mod)(j,k)
ZLP (∆E) = I

(exp)(j)
EEL (∆E) , ∆E < ∆E0 ,

I
(mod)(j,k)
ZLP (∆E) = I

(exp)(j)
EEL +

(
ξ

(nl)(k)
1 (∆E)− I(exp)(j)

EEL (∆E)
)
×F , ∆E0 < ∆E ≤ ∆EI ,

F(∆E) = exp

(
− (∆E −∆EI)

2

(∆E0 −∆EI)
2 δ2

)
, (5.5)

I
(mod)(j,k)
ZLP (∆E) = ξ

(nl)(k)
1 (∆E) , ∆E > ∆EI ,

where ξ
(nl)(k)
1 indicates the output of the k-th neural network that parametrises the ZLP

and δ is a dimensionless tunable parameter. In Eq. (5.5), F(∆E) represents a matching
factor that ensures that the ZLP model prediction smoothly interpolates between ∆E =
∆E0 (where F � 1 and the original spectrum should be reproduced) and ∆E = ∆EI

(where F = 1 leaving the neural network output unaffected). Here we adopt ∆E0 =
∆EI − 0.5 eV, having verified that results are fairly independent of this choice. Taking
into account the matching procedure, we can slightly modify Eq. (5.2) to

I
(mod)(j,k)
inel (∆E) ≡ I

(exp)(j)
EELS (∆E)− I(mod)(j,k)

ZLP (∆E) , ∀ Nrep , j = 1, . . . , Nsp . (5.6)

The ensemble of ZLP-subtracted spectra obtained this way, {I(mod)(j,k)
inel }, can then be used

to reliably extract physical information from the low-loss region of the spectrum.

5.3 Bandgap analysis of polytypic 2H/3R WS2

One particularly important application of the ZLP-subtracted spectra is to estimate the
specimen bandgap in the region where they were acquired. Different approaches have
been put forward to evaluate EBG from subtracted EEL spectra, e.g. by means of the
inflection point of the rising intensity or a linear fit to the maximum positive slope [61].
Here we will adopt the approach of [12] where the behaviour of Iinel(∆E) in the onset
region is modeled as

Iinel(∆E) ' A (∆E − EBG)b , ∆E ≥ EBG , (5.7)

and vanishes for ∆E < EBG, where both the bandgap value EBG as well as the parameters
A and b are extracted from the fit. The exponent b is expected to be b ' 1/2 (' 3/2) for
a semiconductor material characterised by a direct (indirect) bandgap. For each of the
Nsp spectra and the Nrep replicas we fit to Eq. (5.6) the model Eq. (5.7) within a range
taken to be [∆EI − 0.5 eV,∆EI + 0.7 eV]. One ends up with Nrep values for the bandgap
energy and fit exponent for each spectra,{

E
(j,k)
BG , b(j,k)

}
, k = 1, . . . , Nrep , j = 1, . . . , Nsp , (5.8)

from which again one can readily evaluate their statistical estimators. In the following,
we will display the median and the 68% confidence level intervals for these parameters to
account for the fact that their distribution will be in general non-Gaussian.

Here we present the results for the bandgap analysis of sample A, taking location
sp4 in Fig. 5.1 as representative spectrum; compatible results are obtained for the rest
of locations in this sample. As mentioned above, this region is characterised by a siz-
able thickness where WS2 is expected to behave as a bulk material. The left panel of
Fig. 5.2 displays the original and subtracted EEL spectrum together with the predictions
of the ZLP model, where the bands indicate the 68% confidence level uncertainties and
the central value is the median of the distribution. The inset shows the result of the poly-
nomial fits using Eq. (5.7) to the subtracted spectrum together with the corresponding
uncertainty bands.
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Figure 5.2. Left: the original and subtracted EEL spectra corresponding to location sp4 of
sample A in Fig. 5.1, together with the predictions of the ZLP model, where the bands indicate
the 68% confidence level uncertainties. The inset displays the result of fitting Eq. (5.7) to
the onset region of the subtracted spectrum. Right: the average ratio of the derivative of the
intensity distribution in sp4 over its vacuum counterparts, Eq. (3.17)

One can observe how the ZLP model uncertainties are small at low ∆E (due to the
matching condition) and large ∆E (where the ZLP vanishes), but become significant in
the intermediate region where the contributions from IZLP and Iinel become comparable.
It is worth emphasizing that these (unavoidable) uncertainties are neglected in most ZLP
subtraction methods. The validity of our choice for the hyperparameter ∆EI (Table 5.2)
can be verified a posteriori by evaluating the ratio

R(j)
abs (∆EI) ≡

〈
I

(mod)(j)
ZLP

〉
rep

/
I

(exp)(j)
EEL

∣∣∣
∆E=∆EI

, (5.9)

which in this case turns out to be Rabs = 0.98. It is indeed important to verify that
Rabs (∆EI) is not too far from unity, indicating that the training dataset has not been
contaminated by the contributions arising from inelastic scatterings off the specimen.

The average ratio of the derivative of the intensity distribution in sp4 over its vac-
uum counterpart, Eq. (3.17), is shown in the right panel of Fig. 5.2. By requiring that
Rder(∆EI) ' 0.9 we obtain the value ∆EI = 1.8 eV used as baseline in the analysis. It
should be noted that this choice is not unique, for example requiring Rder(∆EI) ' 0.8
instead would have led to ∆EI = 2.0 eV. It is therefore important to asses the stability
of our results as the hyper-parameter ∆EI is varied around its optimal value. With this
motivation, in Fig. 5.3 we display the values of the exponent b and the bandgap energy
EBG obtained from the same subtracted spectrum as that shown in Fig. 5.2 for variations
of ∆EI around its optimal value (vertical dot-dashed line) by an amount of ±0.2 eV. We
observe that the model predictions for both b and EBG are stable with respect to varia-
tions of ∆EI, with shifts in central values contained within the uncertainty bands. We can
thus conclude that our approach is robust with respect to the choice of hyper-parameters.

The final values for EBG and b obtained in the analysis of this specific spectrum are

EBG = 1.6+0.3
−0.2 eV , b = 1.3+0.3

−0.7 . (5.10)

We thus find that for this specific region of the WS2 nanoflowers the model fit to the sub-
tracted EEL spectrum exhibits a clear preference for an indirect bandgap (where b ' 1.5
is expected). This result is consistent with previous studies of the local electronic prop-
erties of bulk WS2, such as those reported in Table 2.1. Consistent results are obtained
for spectra acquired at other locations of Fig. 5.1; for example for sp5 one has

EBG = 1.7± 0.2 eV , b = 1.3+0.3
−0.4 . (5.11)
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Figure 5.3. The values of the exponent b (left) and the bandgap energy EBG (right panel)
from the model Eq. (5.7) obtained from the subtracted spectrum sp14 as ∆EI is varied by ±0.2
eV around its optimal value, indicated by the horizontal dot-dashed line.

These results represent the first EELS-based bandgap determination of WS2 nanostruc-
tures whose crystalline structure is based on mixed 2H/3R polytypes.

5.4 Mapping excitonic transitions in the low-loss region

For the application of our ZLP subtraction strategy to the EEL spectra recorded in
specimen B of the WS2 nanoflowers (bottom panels in Fig. 5.1), the same criterion based
on the derivative ratio Eq. (3.17) to select the hyper-parameter ∆EI was used. In this
case, one finds a value of ∆EI ' 1.4 eV, somewhat lower than the corresponding value
obtained for sample A. The left panel of Fig. 5.4 displays the original and subtracted
spectra corresponding to the representative location sp4 of sample B together with the
predictions of the ZLP model. As before, the bands indicate the 68% confidence level
uncertainties and the central value is the median.

The main difference with respect to the spectra recorded in sample A is the appearance
of well-defined features (peaks) in the subtracted spectrum already for very small values
of ∆E. In particular, we observe two marked peaks at ∆E ' 1.5 and 2.0 eV and a
softer one near ∆E ' 1.7 eV. Further additional features arise also for higher values of
the energy loss. There are two main sources for the observed differences between the
spectra recorded in each sample. The first one is that, while sample A is much thicker
(bulk material), sample B corresponds to thin, overlapping petals whose thicknesses can
be as small as a few monolayers. The second is that the EELS measurements taken in
sample A used a TEM without monochromator, while those in sample B benefited from a
monochromator thus achieving a superior spectral resolution (with an average FWHM of
87 meV to be compared with the 470 meV of sample A, see Table 5.1). This combination
of structural and morphological variations in the specimen together with the operation
conditions of the TEM therefore should account for the most of differences between the
two sets of spectra.

It is worth noting here that our ZLP parametrisation and subtraction strategy exhibits
a satisfactory performance for all the spectra under consideration, irrespective of the
spectral resolution of the TEM used for their acquisition. By comparing Figs. 5.4 and 5.2,
one observes that model uncertainties are larger in the latter case than in the former, as
expected from the superior spectral resolution of the EELS measurements taken on sample
B. Nevertheless, the same approach has been used in both cases without the need of any
fine-tuning or ad hoc adjustments: of course, if the input spectra have been recorded with
better spectral resolution, the resulting ZLP model uncertainties will improve accordingly
without changing the procedure itself.
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Figure 5.4. Left: the original and subtracted EEL spectra corresponding to location sp4 of
sample B in Fig. 5.1, together with the predictions of the ZLP model. The bands indicate
the 68% confidence level uncertainties. Right: comparison of the ZLP-subtracted spectra from
locations sp4, sp5, and sp6 in sample B together with the corresponding model uncertainties.
Note how several features of the subtracted spectra, in particular the peaks at ∆E ' 1.5, 1.7
and 2.0 are eV, are common across the three locations.

Given that the well-defined spectral features present in Fig. 5.4 appear close to the
onset of the inelastic emissions, Iinel(∆E), these spectra are not suitable for bandgap
determination analyses. The reason is that the method of [12] used in sample A is only
applicable under the assumption that there is a sufficiently wide region in ∆E after the
onset of Iinel to perform the polynomial fit of Eq. (5.7). This is clearly not possible
for the spectra recorded in sample B, and indeed model fits restricted to ∆E ≤ 1.4 eV
display a marked numerical instability. Instead of studying the bandgap properties, it
is interesting to exploit the ZLP-subtracted results of sample B to characterise the local
excitonic transitions of polytypic 2H/3R WS2 that are known to arise in the ultra-low-loss
region of the spectra.

Before being able to do this, however, one has to deal with the possible objection
that the peaks present in Fig. 5.4 are not genuine features, but rather fluctuations due to
insufficient statistics that should be smoothed out before this region can be interpreted.
To tackle this concern, the right panel of Fig. 5.4 displays a comparison of the ZLP-
subtracted spectra recorded in the (spatially separated) locations sp4, sp5 and sp6 in
sample B together with their model uncertainties. Both the position and the widths of
the peaks at ∆E ' 1.5, 1.7 and 2.0 eV remain stable, confirming that these are genuine
physical features rather than fluctuations.

These peaks in the ultra-low-loss region of the ZLP-subtracted EELS spectra recorded
on thin, polytypic WS2 nanostructures can be traced back to excitonic transitions. Their
origin can be attributed to the formation of an electron-hole pair mitigated by the di-
electric screening from the surrounding lattice [62]. In nanostructures with reduced di-
mensionality as well as in single layers of TMD materials, exciton peaks arise with bind-
ing energies up to ten times larger than for bulk structures. In the optical spectra of
TMDs, two strongly pronounced resonances denoted by A and B excitons are often ob-
served, appearing at binding energies of 300 and 500 meV below the true bandgap of the
material [63]. Interestingly, this prediction is in agreement with the observed peaks at
∆E ' 1.5 and 1.7 eV if one takes into account the expected value of EBG for very thin
WS2 nanostructures, see Table 2.1

We conclude that ZLP-subtracted spectra in sample B allow one for a clean mapping
of the exciton peaks present in the WS2 nanoflowers down to ∆E ' 1.5 eV together with
the associated uncertainty estimate. Further insights concerning the relationship between
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the exciton peaks in the ultra-low-loss region and the underlying crystalline structure
and specimen morphology could be obtained by combining our findings with ab initio
calculations such as those based on density functional theory.

6 Summary and outlook

In this work we have presented a novel, model-independent strategy to parametrise and
subtract the ubiquitous zero-loss peak that dominates the low-loss region of EEL spectra.
Our strategy is based on machine learning techniques and provides a faithful estimate
of the uncertainties associated to both the input data and the procedure itself, which
can then be propagated to physical predictions without any approximations. We have
demonstrated how, in the case of vacuum spectra, our approach is sufficiently flexible
to accomodate several input variables corresponding to different operation conditions of
the microscope. Further, we are able to reliably extrapolate our predictions, e.g. for the
expected FWHM of the ZLP, to other operation conditions. When applied to spectra
recorded on specimens, our approach makes possible to robustly disentangle the ZLP
contribution from those arising from inelastic scatterings. Thanks to this subtraction,
one can fully exploit the valuable physical information contained in the ultra low-loss
region of the spectra.

Here we have applied this ZLP subtraction strategy to EEL spectra recorded in WS2

nanoflowers characterised by a 2H/3R polytypic crystalline structure. First of all, mea-
surements taken in a relatively thick region of the specimen were used to determine
the local value of the bandgap energy EBG and to assess whether this bandgap is di-
rect or indirect. A model fit to the onset of the inelastic intensity distribution obtains
EBG ' 1.6+0.3

−0.2 eV and exhibits a marked preference for an indirect bandgap. Our find-
ings are consistent with previous studies, both of theoretical and of experimental nature,
concerning the bandgap structure of bulk WS2.

Subsequently, we have applied our method to a thinner region of the WS2 nanoflowers,
specifically a region composed by overlapping petals with varying thicknesses that can be
as small as a few monolayers. We have demonstrated how for such specimens one can
exploit the ZLP-subtracted results to characterise the local excitonic transitions that arise
in the ultra-low-loss region. By charting the exciton peaks of 2H/3R polytypic WS2 there,
we identify two strong peaks at ∆E ' 1.5 and 2 eV (and a softer one at 1.7 eV) and
show how these features are consistent when comparing spatially-separated locations in
sample B. Further, since our method provides an associated uncertainty estimate, one can
robustly establish the statistical significance of each of these ultra-low-loss region features.

The approach presented in this work could be extended in several directions. First
of all, it would be interesting to test its robustness when additional operation conditions
of the microscope are included as input variables, and to verify to which extent the ZLP
parametrisations obtained for an specific microscope can be generalised to an altogether
different TEM. Further, a non-trivial cross-check of our method would be provided by
validating our predictions for other operation conditions of the microscope, such as the
FWHM as a function of the beam energy Eb of the exposure time texp reported in Fig. 4.5,
with actual measurements.

Concerning the physical interpretation of the low-loss region of EEL spectra, our
method could be applied to study the bandgap properties for different types of nanos-
tructures built upon TMD materials, such as MoS2 nanowalls [64] and vertically-oriented
nano-sheets [65] or WS2/MoS2 arrays, heterostructures, and ternary alloys. In addition to
bandgap characterisation, this ZLP-subtraction strategy should allow the detailed study
of other phenomena relevant for the interpretation of the low-loss region such as plas-
mons, excitons, phonon interactions, and intra-band transitions. One could also exploit
the subtracted EEL spectra to further characterise local electronic properties by means
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of the evaluation of the complex dielectric function and its associated uncertainties in
terms of the Kramers-Kronig relations. Finally, these phenomenological studies of local
electronic properties should be compared with ab initio calculations based on the same
underlying crystalline structure as the studied specimens.

Another possible application of the strategy presented in this work would be the
automation of the study of spectral TEM images, such as those displayed in the right
panels of Fig. 5.1, where each pixel contains an individual EEL spectrum. Here machine
learning methods would provide a useful handle in order to identify relevant features of the
spectra (peaks, edges, shoulders) with minimal human intervention (no need to process
each spectrum individually) and then determine how these features vary as we move along
different regions of the nanostructure. Such an approach would combine two important
families of machine learning algorithms, those used for regression, in order to quantify the
properties of spectral features such as width and significance, and those for classification,
to identify categories of distinct features across the spectral image.

Acknowledgments

We are grateful to Emanuele R. Nocera and Jacob J. Ethier for assistance in installing
EELSfitter in the Nikhef computing cluster. L. R. is grateful to Cas, Agneet, and Aar,
for support under all (rainy) circumstances.

Funding

S. E. v. H. and S. C.-B. acknowledge financial support from the ERC through the Start-
ing Grant “TESLA”, grant agreement no. 805021. L. M. acknowledges support from
the Netherlands Organizational for Scientific Research (NWO) through the Nanofront
program. The work of J. R. has been partially supported by NWO.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Methods

The EEL spectra used for the training of the vacuum ZLP model presented in Sect. 4
were collected in a ARM200F Mono-JEOL microscope equipped with a GIF continuum
spectrometer and operated at 60 kV and 200 kV. For these measurements, a slit in the
monochromator of 2.8 µm was used. The TEM and EELS measurements acquired in
Specimen A for the results presented in Sect. 5 were recorded in a JEOL 2100F micro-
scope with a cold field-emission gun equipped with aberration corrector operated at 60
kV. A Gatan GIF Quantum was used for the EELS analyses. The convergence and col-
lection semi-angles were 30.0 mrad and 66.7 mrad respectively. The TEM and EELS
measurements acquired for Specimen B in Sect. 5 were recorded using a JEM ARM200F
monochromated microscope operated at 60 kV and equipped with a GIF quantum ERS.
The convergence and collection semi-angles were 24.6 mrad and 58.4 mrad respectively in
this case, and the aperture of the spectrometer was set to 5 mm.
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Supplementary Material

A Installation and usage of EELSfitter

In this appendix we provide some instructions about the installation and the usage of the
EELSfitter code developed in this work. The code is available from its GitHub repository

https://github.com/LHCfitNikhef/EELSfitter

and is composed by a number of Python scripts. The code requires a working installation
of Python3 and the following libraries: NumPy, TensorFlow (v2), pandas, SciPy and
scikit-learn.

Load data.py This script reads the spectrum intensities and create data-frames to be
used for training the neural network. It reads out the EEL spectra intensities, automati-
cally selects the energy loss at which the peak intensity occurs and shifts the dataset such
that the peak intensity is centered at ∆E =0. Further, for each spectrum it returns the
normalized intensity by normalizing over the total area under the spectrum. The output
is two datasets, df and df vacuum which contain the information on the in-sample and
in-vacuum recorded spectra respectively. The user needs to upload the spectral data in
.txt format to the ’Data’ folder and make sure that the vacuum and in-sample spectra
are added to the appropriate one. For each of the spectra the minimum and maximum
value of the recorded energy loss need to be set manually in Eloss min and Eloss max.

Fitter.ipynb This script is used to run the neural network training on the data that was
uploaded using load data.py. It involves a number of pre-processing steps to determine
the hyper-parameters ∆EI and ∆EII and then it automatically prepares and cuts the data
before it is fed to the neural network to start the training. It is structured as follows:

• Importing libraries and spectral data from the load data.py script.

• Evaluate ∆EI from the intensity derivatives. In order to determine the value for
the hyper-parameter ∆EI, a dataframe df dx is created and it calculates the deriva-
tives of each of the in-sample recorded spectra, stored as df dx[’derivative y*’],
where * is any of the in-sample recorded spectra. The first crossing of any of the
derivatives with zero is determined and stored as the value of ∆EI.

• Evaluate ∆EII for the pseudo-data. It calculates the mean over all vacuum spectra,
df mean, and the ratio of the intensity to the experimental uncertainty for each value
of ∆E, df mean[’ratio’]. The value of ∆EII is then determined as the energy loss
at which this ratio drops below 1 and is stored together with the value of ∆EI as
the hyper-parameters for training. However, if one wishes to use other values for
these parameters, for instance for cross-validating the best value for ∆EI, these can
also be adjusted manually.

• Experimental data processing. The next step is to keep only the data points with
∆E ≤ ∆EI and dropping the points with higher energy losses. Experimental central
values and uncertainties are calculated by means of equal width discretization, for
which the number of bins has to be set as nbins. The default value is 32, which
means that 32 training inputs are spread equally over the range [∆Emin,∆EI]. Note
that the logarithm of the intensity is used as training inputs, because this facili-
tates the optimization of the neural network (IEEL being a steeply falling function
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of ∆E). The code translates this back to the original intensity values after the train-
ing. Npd pseudo datapoints are added in the range [∆EII,∆Emax], where ∆Emax is
the maximum energy loss value of the recorded spectra. The values for Npd and
∆Emax should be changed manually by setting them in max x and N pseudo. The
output is a dataframe df full containing all training data and pseudo data points,
corresponding to a total of Nin (= nbins + Npd) training inputs.

• Initialize the NN model, where the code defines the neural network architecture
and prepares the data inputs to feed them to the neural network for training. The
function make model() allows to define the number of hidden layers and nodes per
layer. The default architecture is 1-10-15-5-1.

• Initialize data for NN training. Here the code prepares the recorded spectra to be
used as inputs for the neural network. First, we initiate placeholders for the variables
x, y and sigma which allow us to create our operations and build our computation
graph, without needing the data itself. The dimension of the placeholder is defined
by [None, dim] where ’dim’ should be set to the dimension of the corresponding
variable. In this case the input is one-dimensional, so dim=1. These placeholders
are used to define predictions, which is in fact a placeholder that is used later to
make predictions on inputs x. Also, we define a vector predict x that is used to
make a direct prediction after training on each of the replicas. It consists of Npred

data points in the energy loss range [pred min, pred max].

• Create the Monte Carlo replicas. The final step to be taken before we can start
training is the creation of sample of Nrep Monte Carlo replicas of the original EEL
spectra, following the procedure described in Sect. 3.2. This is done automatically
using the experimental intensities train y and uncertainties train sigma for a total
of Nrep replicas. The output is an (Nin, Nrep) vector containing all the MC replicas.

• Train the neural networks. The final part of the script, where the NN training
is carried out, is based on the function function train() that implements the
strategy presented in Sect. 3.3. The cost function, optimizer and learning rate are
defined here, together with a ’saver’ used to save the network parameters after each
optimization. We start a loop over Nrep replicas to initiate a training session on each
of the individual replicas in series. For each iteration, the k-th replica is selected
from the sample of Nrep replicas. The data is split into 80% training and 20%
validation data, this partition is done at random for each replica. The resulting
train y and test y arrays are used as training and validation labels. The total
number of training epochs per session is defined in training epochs. The script
displays intermediate results after each number of epochs defined by display step.
Running the session object over the optimizer and cost function requires knowledge
about the values of x and sigma, which are defined inside the feed dict argument.
After each epoch the average training validation costs are evaluated and the network
parameters updated accordingly.

Once the maximum number of epochs had been reached, the optimal stopping point
is determined by taking the absolute minimum of the validation cost and restoring
the corresponding network parameters by means of the ’saver’ function. From this
network graph, one can directly output the prediction on the values of train x and
the results are stored in the array predictions values. It is also possible to make
predictions on any input vector of choice by feeding the vector predict x to the
network, which outputs an array extrapolation.

The datafiles that are stored upon successfully executing this script are the following:
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• Prediction k contains the energy loss train x, the MC training data train y and
the ZLP prediction made on the array train x, where k is the k-th replica.

• Cost k contains the training and validation error for the k-th replica stored after
each display step. The minimum of the the validation array is used to restore the
optimal neural network parameters.

• Extrapolation k contains the arrays predict x and the ZLP predictions made on
these values.

These text files can be retrieved later to make new ZLP predictions without the need
to repeat the training procedure. Futher, we store the optimal network parameters after
each training session in the folder ’Models/Best models’. These can be loaded at a later
stage to make predictions for an arbitrary set of input variables.

Running the loop over all replicas in series, using an input array of ∼50 training
points and a total number of training epochs of 25000 per session, takes approximately
20 seconds per optimization (∼200 replicas per hour).

predictions.ipynb This script is used to analyse the predictions from the trained
neural networks that have been stored in the text files indicated above.

• Import libraries and spectral data from the load data.py script.

• Create dataframes with all individual spectra. In order to later subtract all the
predictions from the original individual spectra, we create a datafile original which
contains the intensity values for each of the original input spectra restricted to the
region between E min and E max.

• Load result files. In order to import the files that were stored during the NN
training, one should input to this script the right directions to find the predic-
tion .txt files by adjusting the lines path to data and path predict, path cost

and path extrapolate, containing the predictions, cost function data and the ex-
trapolation predictions respectively.

• Post-selection criteria. Here one select the datafiles that satisfy suitable post-fit se-
lection criteria, such as the final error function being smaller than a certain thresh-
old. Once these datasets have been selected and stored in an array called use files,
we move on to the evaluation of the ZLP predictions.

• Subtraction. At this step the code uses the function matching() to implement the
matching procedure described in Sect. 5. It also automatically selects the values
of ∆EI and ∆EII for the training session. If the user aims to extract the bandgap
properties from the onset of Iinel, the bandgap() function can be used to fit Eq. 5.7
to the onset region.

Here the code loops over the Nrep replicas and reads each prediction from the ex-
trapolation data file predict x. For each replica k, the code creates a datafile
containing the original spectra intensities (original[’x*’] and original[’y*’]),
the predicted ZLP for this replica (prediction y) and the predicted ZLP after
matching with each spectrum (match *). For each replica we subtract the matched
spectrum from the original spectrum to obtain the desired subtraction: dif * =

original * - match *. This is done for each of the total of the replicas and all
these results are stored in the total replicas dataframe. This file is saved in
‘Data/results/replica files’ such that a user can retrieve them at any time to calcu-
late the statistical estimators such as prediction means and uncertainties.
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• Evaluate the subtracted spectra. Here the code creates a mean rep file that contains
all the median predictions and the upper and lower bounds of the 68% confidence
intervals for the predicted ZLP, matched spectra and the subtracted spectra, for
each of the original recorded spectra originally given as an input. A graphical
representation of the result is then produced, showing the original spectrum, the
matched ZLP and the ZLP-subtracted spectrum including uncertainty bounds.

We emphasize that the predictions pretrained net.ipynb script is similar to the
predictions.ipynb script, but can be executed stand-alone without the need to train
again the neural networks, provided that the model parameters corresponding to some
previous training with the desired input settings are available. The item load result files
is now replaced by create result files, which can be done by importing the pre-trained
nets from the Models folder.
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