2 research outputs found

    An update on wastewater multi-resistant bacteria : identification of clinical pathogens such as Escherichia coli O25b:H4-B2-ST131-producing CTX-M-15 ESBL and KPC-3 Carbapenemase-Producing Klebsiella oxytoca

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Wastewater treatment plants (WWTPs) are significant reservoirs of bacterial resistance. This work aims to identify the determinants of resistance produced by Gram-negative bacteria in the influent and effluent of two WWTPs in Portugal. A total of 96 wastewater samples were obtained between 2016 and 2019. The numbers of total aerobic and fecal contamination bacteria were evaluated, and genomic features were searched by polymerase chain reaction (PCR) and Next-Generation Sequencing (NGS). Enterobacteriaceae corresponded to 78.6% (n = 161) of the 205 isolates identified by 16sRNA. The most frequent isolates were Escherichia spp. (57.1%, n = 117), followed by Aeromonas spp. (16.1%, n = 33) and Klebsiella spp. (12.7%, n = 26). The remaining 29 isolates (14.1%) were distributed across 10 different genera. Among the 183 resistant genes detected, 54 isolates produced extended spectrum β-lactamases (ESBL), of which blaCTX-M-15 was predominant (37 isolates; 68.5%). A KPC-3 carbapenemase-producing K. oxytoca was identified (n = 1), with blaKPC-3 included in a transposon Tn4401 isoform b. A higher number of virulence genes (VG) (19 genes) was found in the E. coli 5301 (O25b-ST131-B2) isolate compared with a commensal E. coli 5281 (O25b-ST410-A) (six genes). Both shared five VG [Enterobactin; Aerobactin, CFA/1 (clade α); Type1 (clade γ1); Type IV]. In conclusion, this work highlights the role of relevant clinical bacteria in WWTPs, such as KPC-3-producing K. oxytoca, and, for the first time, a CTX-M-15-producing Ochromobactrum intermedium, a human opportunistic pathogen, and a SED-1-producing Citrobacter farmeri, an uncommon CTX-M-type extended-spectrum beta-lactamase.This work was supported by the European Union LIFE Programme under Grant Agreement LIFE14 ENV/PT/000739—LIFE Impetus (https://life-impetus.eu/), accessed on 1 February 2021.info:eu-repo/semantics/publishedVersio

    An Update on Wastewater Multi-Resistant Bacteria: Identification of Clinical Pathogens Such as Escherichia coli O25b:H4-B2-ST131-Producing CTX-M-15 ESBL and KPC-3 Carbapenemase-Producing Klebsiella oxytoca

    Get PDF
    Wastewater treatment plants (WWTPs) are significant reservoirs of bacterial resistance. This work aims to identify the determinants of resistance produced by Gram-negative bacteria in the influent and effluent of two WWTPs in Portugal. A total of 96 wastewater samples were obtained between 2016 and 2019. The numbers of total aerobic and fecal contamination bacteria were evaluated, and genomic features were searched by polymerase chain reaction (PCR) and Next-Generation Sequencing (NGS). Enterobacteriaceae corresponded to 78.6% (n = 161) of the 205 isolates identified by 16sRNA. The most frequent isolates were Escherichia spp. (57.1%, n = 117), followed by Aeromonas spp. (16.1%, n = 33) and Klebsiella spp. (12.7%, n = 26). The remaining 29 isolates (14.1%) were distributed across 10 different genera. Among the 183 resistant genes detected, 54 isolates produced extended spectrum β-lactamases (ESBL), of which blaCTX-M-15 was predominant (37 isolates; 68.5%). A KPC-3 carbapenemase-producing K. oxytoca was identified (n = 1), with blaKPC-3 included in a transposon Tn4401 isoform b. A higher number of virulence genes (VG) (19 genes) was found in the E. coli 5301 (O25b-ST131-B2) isolate compared with a commensal E. coli 5281 (O25b-ST410-A) (six genes). Both shared five VG [Enterobactin; Aerobactin, CFA/1 (clade α); Type1 (clade γ1); Type IV]. In conclusion, this work highlights the role of relevant clinical bacteria in WWTPs, such as KPC-3-producing K. oxytoca, and, for the first time, a CTX-M-15-producing Ochromobactrum intermedium, a human opportunistic pathogen, and a SED-1-producing Citrobacter farmeri, an uncommon CTX-M-type extended-spectrum beta-lactamase.This work was supported by the European Union LIFE Programme under Grant Agreement LIFE14 ENV/PT/000739—LIFE Impetus (https://life-impetus.eu/), accessed on 1 February 2021.info:eu-repo/semantics/publishedVersio
    corecore