9,303 research outputs found

    Wear-resistant ball bearings for space applications

    Get PDF
    Ball bearings for hostile environments were developed. They consist of normal ball bearing steel parts of which the rings are coated with hard, wear-resistant, chemical vapor deposited (C.V.D) TiC. Experiments in ultrahigh vacuum, using cages of various materials with self-lubricating properties, have shown that such bearings are suitable for space applications

    Impact of internal bremsstrahlung on the detection of gamma-rays from neutralinos

    Full text link
    We present a detailed study of the effect of internal bremsstrahlung photons in the context of the minimal supersymmetric standard models and their impact on gamma-ray dark matter annihilation searches. We find that although this effect has to be included for the correct evaluation of fluxes of high energy photons from neutralino annihilation, its contribution is relevant only in models and at energies where the lines contribution is dominant over the secondary photons. Therefore, we find that the most optimistic supersymmetric scenarios for dark matter detection do not change significantly when including the internal bremsstrahlung. As an example, we review the gamma-ray dark matter detection prospects of the Draco dwarf spheroidal galaxy for the MAGIC stereoscopic system and the CTA project. Though the flux of high energy photons is enhanced by an order of magnitude in some regions of the parameter space, the expected fluxes are still much below the sensitivity of the instruments.Comment: 5 pages, twocolumn format, 3 figures:3 references added, accepted as Brief Report in PR

    The Dirichlet Obstruction in AdS/CFT

    Full text link
    The obstruction for a perturbative reconstruction of the five-dimensional bulk metric starting from the four-dimensional metric at the boundary,that is, the Dirichlet problem, is computed in dimensions 6d106\leq d\leq 10 and some comments are made on its general structure and, in particular, on its relationship with the conformal anomaly, which we compute in dimension d=8d=8.Comment: 13 pages, references added (this paper supersedes hep-th/0206140, "A Note on the Bach Tensor in AdS/CFT", which has been withdrawn

    Computing the free energy of molecular solids by the Einstein molecule approach: Ices XIII and XIV, hard-dumbbells and a patchy model of proteins

    Full text link
    The recently proposed Einstein molecule approach is extended to compute the free energy of molecular solids. This method is a variant of the Einstein crystal method of Frenkel and Ladd[J. Chem. Phys. 81,3188 (1984)]. In order to show its applicability, we have computed the free energy of a hard-dumbbells solid, of two recently discovered solid phases of water, namely, ice XIII and ice XIV, where the interactions between water molecules are described by the rigid non-polarizable TIP4P/2005 model potential, and of several solid phases that are thermodynamically stable for an anisotropic patchy model with octahedral symmetry which mimics proteins.Our calculations show that both the Einstein crystal method and the Einstein molecule approach yield the same results within statistical uncertainty.In addition, we have studied in detail some subtle issues concerning the calculation of the free energy of molecular solids. First, for solids with non-cubic symmetry, we have studied the effect of the shape of the simulation box on the free energy. Our results show that the equilibrium shape of the simulation box must be used to compute the free energy in order to avoid the appearance of artificial stress in the system that will result in an increase of the free energy. In complex solids, such as the solid phases of water, another difficulty is related to the choice of the reference structure. As in some cases there is not an obvious orientation of the molecules, it is not clear how to generate the reference structure. Our results will show that,as long as the structure is not too far from the equilibrium structure,the calculated free energy is invariant to the reference structure used in the free energy calculations. Finally, the strong size dependence of the free energy of solids is also studied.Comment: 43 pages, 5 figure

    Rudiments of Holography

    Full text link
    An elementary introduction to Maldacena's AdS/CFT correspondence is given, with some emphasis in the Fefferman-Graham construction. This is based on lectures given by one of us (E.A.) at the Universidad Autonoma de Madrid.Comment: 60 pages, additional misprints corrected, references adde

    Photoluminescence Stokes shift and exciton fine structure in CdTe nanocrystals

    Full text link
    The photoluminescence spectra of spherical CdTe nanocrystals with zincblende structure are studied by size-selective spectroscopic techniques. We observe a resonant Stokes shift of 15 meV when the excitation laser energy is tuned to the red side of the absorption band at 2.236 eV. The experimental data are analyzed within a symmetry-based tight-binding theory of the exciton spectrum, which is first shown to account for the size dependence of the fundamental gap reported previously in the literature. The theoretical Stokes shift presented as a function of the gap shows a good agreement with the experimental data, indicating that the measured Stokes shift indeed arises from the electron-hole exchange interaction.Comment: 8 pages, 4 figures, LaTe

    Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources

    Get PDF
    Axion Like Particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as AGNs. Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources... [ABRIDGED] The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging atmospheric Cherenkov telescopes like CANGAROO, HESS, MAGIC and VERITAS.Comment: 16 pages, 7 figures. Replaced to match the published version in Phys. Rev. D. Minor changes with respect to v
    corecore