352 research outputs found

    Probing microscopic origins of confined subdiffusion by first-passage observables

    Full text link
    Subdiffusive motion of tracer particles in complex crowded environments, such as biological cells, has been shown to be widepsread. This deviation from brownian motion is usually characterized by a sublinear time dependence of the mean square displacement (MSD). However, subdiffusive behavior can stem from different microscopic scenarios, which can not be identified solely by the MSD data. In this paper we present a theoretical framework which permits to calculate analytically first-passage observables (mean first-passage times, splitting probabilities and occupation times distributions) in disordered media in any dimensions. This analysis is applied to two representative microscopic models of subdiffusion: continuous-time random walks with heavy tailed waiting times, and diffusion on fractals. Our results show that first-passage observables provide tools to unambiguously discriminate between the two possible microscopic scenarios of subdiffusion. Moreover we suggest experiments based on first-passage observables which could help in determining the origin of subdiffusion in complex media such as living cells, and discuss the implications of anomalous transport to reaction kinetics in cells.Comment: 21 pages, 3 figures. Submitted versio

    Nidifications d'oiseaux de mer en Guyane

    Get PDF

    L'ibis rouge en Guyane

    Get PDF

    L'Ibis rouge en Guyane

    Get PDF

    Note sur l'ibis rouge en Guyane

    Get PDF

    Note sur les caïmans en Guyane

    Get PDF

    Diffusion-limited reactions and mortal random walkers in confined geometries

    Full text link
    Motivated by the diffusion-reaction kinetics on interstellar dust grains, we study a first-passage problem of mortal random walkers in a confined two-dimensional geometry. We provide an exact expression for the encounter probability of two walkers, which is evaluated in limiting cases and checked against extensive kinetic Monte Carlo simulations. We analyze the continuum limit which is approached very slowly, with corrections that vanish logarithmically with the lattice size. We then examine the influence of the shape of the lattice on the first-passage probability, where we focus on the aspect ratio dependence: Distorting the lattice always reduces the encounter probability of two walkers and can exhibit a crossover to the behavior of a genuinely one-dimensional random walk. The nature of this transition is also explained qualitatively.Comment: 18 pages, 16 figure
    corecore