89 research outputs found
Navigated Brain Stimulation (NBS) for Pre-Surgical Planning of Brain Lesion in Critical Areas: Basic Principles and Early Experience
none3noModern neurosurgery attempts to get the difficult goal of combining an "aggressive" resection of brain tumors with the fundamental purpose of preserving brain functions and best possible quality of life.
One of the most important evolutions of neurosurgical therapies is the opportunity to provide a customized surgical intervention by using modern methods to "map" the eloquent areas of the brain. This allows the identification of brain functional areas to be preserved from possible inadvertent intraoperative damage.
Direct cortical stimulation (DCS) is an intraoperative technique that uses electrodes placed directly on the exposed cortical surface of the brain to stimulate activity of functional areas by simultaneously recording the evoked responses peripherally. DCS is very precise and reliable and can be considered the gold standard in brain mapping and intraoperative functional monitoring. Nevertheless, the neurosurgeon discovers the spatial relationship between the disease and eloquent cortical surfaces only after having completed a craniotomy and dural opening.
A pre-surgical mapping method would give the opportunity to plan the treatment of brain diseases optimizing many aspects of the surgical treatment, including patient positioning, type of anesthesia, size of craniotomy, and extent of resection. Moreover, pre-surgical mapping would allow more precise prediction of the efficacy and risks of treatments that can be discussed with the patient and influence the therapeutic strategy.
New techniques have been proposed in an attempt to provide a reliable method for the functional study that can be, however, exploited pre-operatively. The most recent of these methods of mapping cortical activities is navigated brain stimulation (NBS), which is based on the neurophysiological technique of transcranial magnetic stimulation (TMS) of the cerebral cortex combined with the conventional neuronavigation. Basic principles of NBS will be here discussed together with our preliminary experience using this technique in different neurosurgical diseases.mixedDr. Terry Lichtor; Alafaci C; Conti A; Tomasello F.Dr. Terry Lichtor; Alafaci C; Conti A; Tomasello F
Imaging features of perineural and perivascular spread in rapidly progressive rhino-orbital-cerebral mucormycosis: A case report and brief review of the literature
Background: Rhinocerebral mucormycosis (ROCM) is an opportunistic fungal infection originating from the paranasal sinuses with extension to the brain. A delayed diagnosis can rapidly result in a poor prognosis. ROCM commonly affects patients with diabetes or immunocompromised states with a variable progression. Case description: We report the case of a 59-year old patient with an untreated diabetes who developed a ROCM with rapidly progressive neurological symptoms. From the onset of sinus pain, nasal congestion, he rapidly developed facial swelling and masticatory dysfunction. The patient underwent sinus surgery which allowed Rhizopus oryzae to be isolated. Accordingly, a systemic therapy by intensive intravenous amphotericin B was started. Nevertheless, the infection rapidly resulted in bilateral cavernous sinuses thrombosis and occlusion of the left internal carotid artery providing the subsequent patient death. Conclusion: Mucormycosis is a life-threatening fungal infection in diabetic and/or immunosuppressed patients. Our case demonstrates the three main mechanisms for infection spreading that are direct, perineural, and perivascular diffusion. Clear identification of the main risk factors, proper assessment of clinical features, and radiological findings may improve the chance for an early diagnosis and patient survival
ERYTHROPOIETIN FOR THE TREATMENT OF SUBARACHNOID HEMORRAGE: A FEASIBLE INGREDIENT FOR A SUCCESS MEDICAL RECIPE
Subaracnhoid hemorrage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Althoug an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbility and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered fo the treatment of cerebral vasospasm. In recent years, the mechanism contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been intensively investigated. A number of pathological processes have been identified in the pathogenesis of vasospasm including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. to date, the current therapeutic interventions remain ineffective being limited to the manipulation os systemic blood pressure, variation of blood volume and viscosity, and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO), has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is systematically administered. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the recurrent review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrage
Rare Neural Tube Defect: Type I Split Cord Malformation and Spinal Neurenteric Cyst in an Adult
- …
