1,934 research outputs found

    Two-Face(s): ionized and neutral gas winds in the local Universe

    Get PDF
    We present a comprehensive study of the Na I λ\lambda5890, 5895 (Na I D) resonant lines in the Sloan Digital Sky Survey (SDSS, DR7) spectroscopic sample to look for neutral gas outflows in the local galaxies. Individual galaxy spectra are stacked in bins of M⋆{\star} and SFR to investigate the dependence of galactic wind occurrence and velocity as a function of the galaxy position in the SFR-M⋆M{\star} plane. In massive galaxies at the high SFR tail we find evidence of a significant blue-shifted Na I D absorption, which we interpret as evidence of neutral outflowing gas. The occurrence of the blue-shifted absorption is observed at the same significance for purely SF galaxies, AGN and composite systems at fixed SFR. In all classes of objects the blue-shift is the largest and the Na I D equivalent width the smallest for face-on galaxies while the absorption feature is at the systemic velocity for edge-on systems. This indicates that the neutral outflow is mostly perpendicular or biconical with respect to the galactic disk. We also compare the kinematics of the neutral gas with the ionized gas phase as traced by the [OIII]λ\lambda5007, Hα\alpha, [NII]λ6548\lambda6548 and [NII]λ6584\lambda6584 emission lines. Differently for the neutral gas phase, all the emission lines show evidence of perturbed kinematics only in galaxies with a significant level of nuclear activity and, they are independent from the disk inclination. In conclusion, we find that, in the local Universe, galactic winds show two faces which are related to two different ejection mechanisms, namely the neutral outflowing gas phase related to the SF activity along the galaxy disk and the ionized phase related to the AGN feedback. In both the neutral and ionized gas phases, the observed wind velocities suggest that the outflowing gas remains bound to the galaxy with no definitive effect on the gas reservoir.Comment: Accepted to A&A, 13 pages, 9 figure

    Longitudinal and azimuthal evolution of two-particle transverse momentum correlations in Pb–Pb collisions at sNN=2.76TeV

    Get PDF
    This paper presents the first measurements of the charge independent (CI) and charge dependent (CD) two-particle transverse momentum correlators G2CI and G2CD in Pb–Pb collisions at sNN=2.76TeV by the ALICE collaboration. The two-particle transverse momentum correlator G2 was introduced as a measure of the momentum current transfer between neighboring system cells. The correlators are measured as a function of pair separation in pseudorapidity (Δη) and azimuth (Δφ) and as a function of collision centrality. From peripheral to central collisions, the correlator G2CI exhibits a longitudinal broadening while undergoing a monotonic azimuthal narrowing. By contrast, G2CD exhibits a narrowing along both dimensions. These features are not reproduced by models such as HIJING and AMPT. However, the observed narrowing of the correlators from peripheral to central collisions is expected to result from the stronger transverse flow profiles produced in more central collisions and the longitudinal broadening is predicted to be sensitive to momentum currents and the shear viscosity per unit of entropy density η/s of the matter produced in the collisions. The observed broadening is found to be consistent with the hypothesized lower bound of η/s and is in qualitative agreement with values obtained from anisotropic flow measurements

    Production of light-flavor hadrons in pp collisions at √s=7and√s=13TeV

    Get PDF
    The production of π±, K ±, KS0, K ∗(892) , p , ϕ(1020) , Λ , Ξ -, Ω -, and their antiparticles was measured in inelastic proton–proton (pp) collisions at a center-of-mass energy of s = 13 TeV at midrapidity (| y| < 0.5) as a function of transverse momentum (pT) using the ALICE detector at the CERN LHC. Furthermore, the single-particle pT distributions of KS0, Λ , and Λ ÂŻ in inelastic pp collisions at s=7 TeV are reported here for the first time. The pT distributions are studied at midrapidity within the transverse momentum range 0 ≀ pT≀ 20 GeV/c, depending on the particle species. The pT spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower s and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high pT with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and xT≡2pT/s scaling properties of hadron production are also studied. As the collision energy increases from s = 7–13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of s, while ratios for multi-strange hadrons indicate enhancements. The pT-differential cross sections of π±, K ± and p (p ÂŻ) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for π± and p (p ÂŻ) at high pT

    The main sequence of star-forming galaxies across cosmic times

    Get PDF
    By compiling a comprehensive census of literature studies, we investigate the evolution of the main sequence (MS) of star-forming galaxies (SFGs) in the widest range of redshift (0 &lt; z &lt; 6) and stellar mass (108.5–1011.5 M☉) ever probed. We convert all observations to a common calibration and find a remarkable consensus on the variation of the MS shape and normalization across cosmic time. The relation exhibits a curvature towards the high stellar masses at all redshifts. The best functional form is governed by two parameters: the evolution of the normalization and the turnover mass (M0(t)), which both evolve as a power law of the Universe age. The turn-over mass determines the MS shape. It marginally evolves with time, making the MS slightly steeper towards z ∌ 4–6. At stellar masses below M0(t), SFGs have a constant specific SFR (sSFR), while above M0(t) the sSFR is suppressed. We find that the MS is dominated by central galaxies. This allows to turn M0(t) into the corresponding host halo mass. This evolves as the halo mass threshold between cold and hot accretion regimes, as predicted by the theory of accretion, where the central galaxy is fed or starved of cold gas supply, respectively. We, thus, argue that the progressive MS bending as a function of the Universe age is caused by the lower availability of cold gas in haloes entering the hot accretion phase, in addition to black hole feedback. We also find qualitatively the same trend in the largest sample of star-forming galaxies provided by the IllustrisTNG simulation. Nevertheless, we still note large quantitative discrepancies with respect to observations, in particular at the high-mass end. These can not be easily ascribed to biases or systematics in the observed SFRs and the derived MS

    Fractal Weyl law for Linux Kernel Architecture

    Full text link
    We study the properties of spectrum and eigenstates of the Google matrix of a directed network formed by the procedure calls in the Linux Kernel. Our results obtained for various versions of the Linux Kernel show that the spectrum is characterized by the fractal Weyl law established recently for systems of quantum chaotic scattering and the Perron-Frobenius operators of dynamical maps. The fractal Weyl exponent is found to be Μ≈0.63\nu \approx 0.63 that corresponds to the fractal dimension of the network d≈1.2d \approx 1.2. The eigenmodes of the Google matrix of Linux Kernel are localized on certain principal nodes. We argue that the fractal Weyl law should be generic for directed networks with the fractal dimension d<2d<2.Comment: RevTex 6 pages, 7 figs, linked to arXiv:1003.5455[cs.SE]. Research at http://www.quantware.ups-tlse.fr/, Improved version, changed forma

    Multiplicity dependence of (anti-)deuteron production in pp collisions at s=7TeV

    Get PDF
    In this letter, the production of deuterons and anti-deuterons in pp collisions at s=7 TeV is studied as a function of the charged-particle multiplicity density at mid-rapidity with the ALICE detector at the LHC. Production yields are measured at mid-rapidity in five multiplicity classes and as a function of the deuteron transverse momentum (pT). The measurements are discussed in the context of hadron–coalescence models. The coalescence parameter B2, extracted from the measured spectra of (anti-)deuterons and primary (anti-)protons, exhibits no significant pT-dependence for pT<3 GeV/c, in agreement with the expectations of a simple coalescence picture. At fixed transverse momentum per nucleon, the B2 parameter is found to decrease smoothly from low multiplicity pp to Pb–Pb collisions, in qualitative agreement with more elaborate coalescence models. The measured mean transverse momentum of (anti-)deuterons in pp is not reproduced by the Blast-Wave model calculations that simultaneously describe pion, kaon and proton spectra, in contrast to central Pb–Pb collisions. The ratio between the pT-integrated yield of deuterons to protons, d/p, is found to increase with the charged-particle multiplicity, as observed in inelastic pp collisions at different centre-of-mass energies. The d/p ratios are reported in a wide range, from the lowest to the highest multiplicity values measured in pp collisions at the LHC

    Dielectron production in proton-proton collisions at √s=7 TeV

    Get PDF
    The first measurement of e(+)e(-) pair production at mid-rapidity (vertical bar eta vertical bar(e) &lt; 0.8) in pp collisions at root s = 7TeV with ALICE at the LHC is presented. The dielectron production is studied as a function of the invariant mass (m(ee )&lt; 3.3 GeV/c(2)), the pair transverse momentum (p(T,ee) &lt; 8 GeV/c), and the pair transverse impact parameter (DCA(ee)), i.e., the average distance of closest approach of the reconstructed electron and positron tracks to the collision vertex, normalised to its resolution. The results are compared with the expectations from a cocktail of known hadronic sources and are well described when PYTHIA is used to generate the heavy-flavour contributions. In the low-mass region (0.14 &lt; m(ee) &lt; 1.1 GeV/c(2)), prompt and non-prompt e(+)e(-) sources can be separated via the DCA(ee). In the intermediate-mass region (1.1 &lt; m(ee) &lt; 2.7 GeV/c(2)), a double-differential fit to the data in m(ee) and p(T,ee) and a fit of the DCA(ee) distribution allow the total cc and bb cross sections to be extracted. Two different event generators, PYTHIA and POWHEG, can reproduce the shape of the two-dimensional m(ee) and p(T,ee) spectra, as well as the shape , of the DCA(ee) distribution, reasonably well. However, differences in the c (c) over bar and b (b) over bar cross sections are observed when using the generators to extrapolate to full phase space. Finally, the ratio of inclusive to decay photons is studied via the measurement of virtual direct photons in the transverse-momentum range 1 &lt; p(T) &lt; 8 GeV/c. This is found to be unity within the statistical and systematic uncertainties and consistent with expectations from next-to-leading order perturbative quantum chromodynamic calculations

    Analysis of the apparent nuclear modification in peripheral Pb–Pb collisions at 5.02 TeV

    Get PDF
    Charged-particle spectra at midrapidity are measured in Pb–Pb collisions at the centre-of-mass energy per nucleon–nucleon pair s NN =5.02 TeV and presented in centrality classes ranging from most central (0–5%) to most peripheral (95–100%) collisions. Possible medium effects are quantified using the nuclear modification factor (R AA ) by comparing the measured spectra with those from proton–proton collisions, scaled by the number of independent nucleon–nucleon collisions obtained from a Glauber model. At large transverse momenta (

    Measurement of the (anti-)3He elliptic flow in Pb–Pb collisions at sNN=5.02TeV

    Get PDF
    The elliptic flow (v2) of (anti-)3He is measured in Pb–Pb collisions at sNN=5.02TeV in the transverse-momentum (pT) range of 2–6 GeV/c for the centrality classes 0–20%, 20–40%, and 40–60% using the event-plane method. This measurement is compared to that of pions, kaons, and protons at the same center-of-mass energy. A clear mass ordering is observed at low pT, as expected from relativistic hydrodynamics. The violation of the scaling of v2 with the number of constituent quarks at low pT, already observed for identified hadrons and deuterons at LHC energies, is confirmed also for (anti-)3He. The elliptic flow of (anti-)3He is underestimated by the Blast-Wave model and overestimated by a simple coalescence approach based on nucleon scaling. The elliptic flow of (anti-)3He measured in the centrality classes 0–20% and 20–40% is well described by a more sophisticated coalescence model where the phase-space distributions of protons and neutrons are generated using the iEBE-VISHNU hybrid model with AMPT initial conditions

    Production of the ρ(770)0 meson in pp and Pb-Pb collisions at sNN =2.76 TeV

    Get PDF
    The production of the ρ(770)0 meson has been measured at midrapidity (|y|<0.5) in pp and centrality differential Pb-Pb collisions at sNN= 2.76 TeV with the ALICE detector at the Large Hadron Collider. The particles have been reconstructed in the ρ(770)0→π+π- decay channel in the transverse-momentum (pT) range 0.5-11 GeV/c. A centrality-dependent suppression of the ratio of the integrated yields 2ρ(770)0/(π++π-) is observed. The ratio decreases by ∌40% from pp to central Pb-Pb collisions. A study of the pT-differential 2ρ(770)0/(π++π-) ratio reveals that the suppression occurs at low transverse momenta, pT<2 GeV/c. At higher momentum, particle ratios measured in heavy-ion and pp collisions are consistent. The observed suppression is very similar to that previously measured for the K∗(892)0/K ratio and is consistent with EPOS3 predictions that may imply that rescattering in the hadronic phase is a dominant mechanism for the observed suppression
    • 

    corecore