38 research outputs found

    The Solar Neighborhood. XXXIX. Parallax Results from the CTIOPI and NOFS Programs: 50 New Members of the 25 Parsec White Dwarf Sample

    Get PDF
    We present 114 trigonometric parallaxes for 107 nearby white dwarf (WD) systems from both the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI) and the U. S. Naval Observatory Flagstaff Station (NOFS) parallax programs. Of these, 76 parallaxes for 69 systems were measured by the CTIOPI program and 38 parallaxes for as many systems were measured by the NOFS program. A total of 50 systems are confirmed to be within the 25 pc horizon of interest. Coupled with a spectroscopic confirmation of a common proper motion companion to a Hipparcos star within 25 pc as well as confirmation parallax determinations for two WD systems included in the recently released Tycho Gaia Astrometric Solution (TGAS) catalog, we add 53 new systems to the 25 pc WD sample −- a 42% increase. Our sample presented here includes four strong candidate halo systems, a new metal-rich DAZ WD, a confirmation of a recently discovered nearby short-period (P = 2.85 hr) double degenerate, a WD with a new astrometric pertubation (long period, unconstrained with our data), and a new triple system where the WD companion main-sequence star has an astrometric perturbation (P ∼\sim 1.6 yr).Comment: 32 pages, 12 figures. Figure 4 in the manuscript is a representative set of plots - plots for all WDs presented here are available (allfits_photo.pdf, allfits_photo_DQ.pdf, and allfits_photo_DZ.pdf). Accepted for publication in The Astronomical Journa

    Evidence for Cloud Disruption in the L/T Dwarf Transition

    Full text link
    Clouds of metal-bearing condensates play a critical role in shaping the emergent spectral energy distributions of the coolest classes of low-mass stars and brown dwarfs, L and T dwarfs. Because condensate clouds in planetary atmospheres show distinct horizontal structure, we have explored a model for partly cloudy atmospheres in brown dwarfs. Our model successfully reproduces the colors and magnitudes of both L and T dwarfs for the first time, including the unexpected brightning of the early- and mid-type T dwarfs at J-band, provided that clouds are rapidly removed from the photosphere at T_eff ~ 1200 K. The clearing of cloud layers also explains the surprising persistence and strengthening of gaseous FeH bands in early- and mid-type T dwarfs. The breakup of cloud layers is likely driven by convection in the troposphere, analogous to phenomena observed on Jupiter. Our results demonstrate that planetary-like atmospheric dynamics must be considered when examining the evolution of free-floating brown dwarfs.Comment: 12 pages, 3 figures, accepted to ApJ Letters for June 200

    The runaway binary LP 400−22 is leaving the Galaxy

    Get PDF
    We present optical spectroscopy, astrometry, radio and X-ray observations of the runaway binary LP 400−22. We refine the orbital parameters of the system based on our new radial velocity observations. Our parallax data indicate that LP 400−22 is significantly more distant (3σ lower limit of 840 pc) than initially predicted. LP 400−22 has a tangential velocity in excess of 830 km s^−1; it is unbound to the Galaxy. Our radio and X-ray observations fail to detect a recycled millisecond pulsar companion, indicating that LP 400−22 is a double white dwarf system. This essentially rules out a supernova runaway ejection mechanism. Based on its orbit, a Galactic Centre origin is also unlikely. However, its orbit intersects the locations of several globular clusters; dynamical interactions between LP 400−22 and other binary stars or a central black hole in a dense cluster could explain the origin of this unusual binary

    Discovery of a Brown Dwarf Companion to Gliese 570ABC: A 2MASS T Dwarf Significantly Cooler than Gliese 229B

    Get PDF
    We report the discovery of a widely separated (258\farcs3\pm0\farcs4) T dwarf companion to the Gl 570ABC system. This new component, Gl 570D, was initially identified from the Two Micron All Sky Survey (2MASS). Its near-infrared spectrum shows the 1.6 and 2.2 \micron CH4_4 absorption bands characteristic of T dwarfs, while its common proper motion with the Gl 570ABC system confirms companionship. Gl 570D (MJ_J = 16.47±\pm0.07) is nearly a full magnitude dimmer than the only other known T dwarf companion, Gl 229B, and estimates of L = (2.8±\pm0.3)x10−6^{-6} L_{\sun} and Teff_{eff} = 750±\pm50 K make it significantly cooler and less luminous than any other known brown dwarf companion. Using evolutionary models by Burrows et al. and an adopted age of 2-10 Gyr, we derive a mass estimate of 50±\pm20 MJup_{Jup} for this object.Comment: 13 pages, 2 figures, 2 tables, accepted by ApJ

    Trigonometric Parallaxes of Central Stars of Planetary Nebulae

    Get PDF
    Trigonometric parallaxes of 16 nearby planetary nebulae are presented, including reduced errors for seven objects with previous initial results and results for six new objects. The median error in the parallax is 0.42 mas, and twelve nebulae have parallax errors less than 20 percent. The parallax for PHL932 is found here to be smaller than was measured by Hipparcos, and this peculiar object is discussed. Comparisons are made with other distance estimates. The distances determined from these parallaxes tend to be intermediate between some short distance estimates and other long estimates; they are somewhat smaller than estimated from spectra of the central stars. Proper motions and tangential velocities are presented. No astrometric perturbations from unresolved close companions are detected.Comment: 24 pages, includes 4 figures. Accepted for A
    corecore