28 research outputs found

    Projecting grassland sensitivity to climate change from an ensemble of models

    Get PDF
    The grassland biome covers about one-quarter of the earth’s land area and contributes to the livelihoods of ca. 800 million people. Increased aridity and persistent droughts are projected in the twenty-first century for most of Africa, southern Europe and the Middle East, most of the Americas, Australia and South East Asia. A number of these regions have a large fraction of their land use covered by grasslands and rangelands. Grasslands are the ecosystems that respond most rapidly to precipitation variability. However, global projections of climate change impacts on grasslands are still lacking in the scientific literature. Within AgMIP, based on the C3MP protocol initially developed for crops, we have explored the sensitivity of temperate grasslands to climate change drivers with an ensemble of models. Site calibrated models are used to provide projections under probabilistic climate change scenarios, which are defined by a combination of air temperature, precipitation and atmospheric CO2 changes resulting in 99 runs for each model times site combination. This design provides a test of grassland production, GHG (N2O and CH4) emissions and soil carbon sensitivity to climate change drivers. This integrated approach has been tested for 12 grassland simulation models applied to 19 sites over three continents. We show here that a single polynomial emulator can be fitted with high significance to the results of all models and sites, when these are expressed as relative changes from the optimal combination of climate drivers. This polynomial emulator shows that elevated atmospheric CO2 expands the thermal and hydric range which allows for the development of temperate grasslands. Moreover, we calculate the climatic response surface of GHG emissions per unit grassland production and we show that this surface varies with elevated CO2. From these results we provide first estimates of the impacts of climate change on temperate grasslands based on a range of climate scenarios

    X-linked hypomyelination with spondylometaphyseal dysplasia (H-SMD) associated with mutations in AIFM1

    Get PDF
    An X-linked condition characterized by the combination of hypomyelinating leukodystrophy and spondylometaphyseal dysplasia (H-SMD) has been observed in only four families, with linkage to Xq25-27, and recent genetic characterization in two families with a common AIFM1 mutation. In our study, 12 patients (6 families) with H-SMD were identified and underwent comprehensive assessment accompanied by whole-exome sequencing (WES). Pedigree analysis in all families was consistent with X-linked recessive inheritance. Presentation typically occurred between 12 and 36 months. In addition to the two disease-defining features of spondylometaphyseal dysplasia and hypomyelination on MRI, common clinical signs and symptoms included motor deterioration, spasticity, tremor, ataxia, dysarthria, cognitive defects, pulmonary hypertension, nystagmus, and vision loss due to retinopathy. The course of the disease was slowly progressive. All patients had maternally inherited or de novo mutations in or near exon 7 of AIFM1, within a region of 70 bp, including synonymous and intronic changes. AIFM1 mutations have previously been associated with neurologic presentations as varied as intellectual disability, hearing loss, neuropathy, and striatal necrosis, while AIFM1 mutations in this small region present with a distinct phenotype implicating bone. Analysis of cell lines derived from four patients identified significant reductions in AIFM1 mRNA and protein levels in osteoblasts. We hypothesize that AIFM1 functions in bone metabolism and myelination and is responsible for the unique phenotype in this condition.</p

    Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms

    Get PDF
    BACKGROUND: Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. RESULTS: In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. CONCLUSION: Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution

    Extrinsic Motivation in the Workshop Setting

    No full text
    poster,Biology/CAS 352 student leader training semina

    Applied Thermoelectric Solutions

    No full text
    Applied Thermoelectric Solutions (ATS) is a Nevada based company created to utilize thermoelectric devices in advancing and aiding automotive power systems in the effort to reduce oil dependencies and harmful emissions. Amidst economic and global crisis, the need for renewable energy is an ever growing concern. It is estimated that the world’s remaining oil supply will run dry in 40 years, according to experts from RFE/RL website. To combat this issue, research into renewable energy is becoming more prevalent. Currently there are several alternative fuel methods being researched for use in mass transit. As of now, gasoline/electric hybrid technology is being utilized to bridge the gap between current and future “green” technologies. Ultimately, society needs to become less fossil fuel dependent and more energy efficient. Also, with the nation in a current economic decline, the desire for luxury or extravagant items is less desirable. Considering the ramifications of global warming on the environment and the current economic crisis, “green” technology will become a high growth industry. Our product is designed to take advantage of the current economic crisis and launch “green” technology to the next level. ATS will manufacture and market a patented mount and existing thermoelectric technology in an assembly, created to provide alternative energy to hybrid and electric automotives. The assembly converts frictional heating from vehicle brake pads to electrical energy. This conversion from mechanical energy to electrical energy can be used for a portion of the power input into a vehicle battery, thus improving hybrid and electrical automotive consumers’ gas mileage. ATS is a new S Corporation getting ready to enter the market. Started by seven senior Mechanical Engineering students from the University of Nevada-Reno, ATS offers fresh and innovative ideas to acquire an advantage in a competitive market. Currently, ATS has created and tested a working prototype of the thermoelectric assembly. All engineering analysis has been conducted using analysis software, provided by the University of Nevada-Reno. The University of Nevada-Reno has granted ATS $350 dollars in the development of the prototype. ATS is in the process of obtaining a patent for the thermoelectric assembly. The patent will provide protection of the assembly and manufactured brake mount

    Comparative phylogenetics of repetitive elements in a diverse order of flowering plants (Brassicales).

    No full text
    Genome sizes of plants have long piqued the interest of researchers due to the vast differences among organisms. However, the mechanisms that drive size differences have yet to be fully understood. Two important contributing factors to genome size are expansions of repetitive elements, such as transposable elements (TEs), and whole-genome duplications (WGD). Although studies have found correlations between genome size and both TE abundance and polyploidy, these studies typically test for these patterns within a genus or species. The plant order Brassicales provides an excellent system to further test if genome size evolution patterns are consistent across larger time scales, as there are numerous WGDs. This order is also home to one of the smallest plant genomes, Arabidopsis thaliana-chosen as the model plant system for this reason-as well as to species with very large genomes. With new methods that allow for TE characterization from low-coverage genome shotgun data and 71 taxa across the Brassicales, we confirm the correlation between genome size and TE content, however, we are unable to reconstruct phylogenetic relationships and do not detect any shift in TE abundance associated with WGD

    Ethics Guidance for Environmental Scientists Engaged in Surveillance of Wastewater for SARS-CoV-2.

    No full text
    The COVID-19 pandemic has given rise to rapid and widespread international pursuit of wastewater surveillance for genetic signals of SARS-CoV-2, the virus causing the pandemic. Environmental scientists and engineers familiar with the techniques required for this endeavor have responded. Many of the environmental scientists engaged in these investigations have not necessarily had experience with the ethical obligations associated with generating and handling human health data. The Canadian Water Network facilitated adoption of these surveillance methods by creating a national coalition, which included a public health advisory group that recognized a need for ethics guidance for the wastewater approach to public health surveillance. This Policy Analysis addresses that need and is based on a review of relevant ethics literature tightly focused on ethics applicable to public health surveillance. That review revealed that classical health bioethics governing clinical practice and general public health ethics guidance did not adequately address key issues in wastewater surveillance. The 2017 World Health Organization guidelines, directly based on a systematic literature review, specifically addressed ethical issues in public health surveillance. The application of relevant ethical guidance to wastewater surveillance is analyzed and summarized for environmental scientists
    corecore