3,017 research outputs found

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites

    Large scale reactive additive manufacturing and what to expect when scaling up

    Get PDF
    Additive manufacturing as a whole offers tremendous savings in time and cost for rapid prototyping and tooling. At present there is a significant number of thermoplastic printers available from small-scale filament-based extrusion to large scale pellet-based extrusion. Thermosets have seen less growth and have been primarily limited to small scale research setups. Recently, a large-scale thermoset printer, the Reactive Additive Manufacturing (RAM) printer was developed (cf. Figure 1). This printer consists of an overall build volume of 450 ft3 and a gantry speed up to 50 in/s. The RAM system is also equipped with a modular pumping station capable of pumping feedstock material at pressures of 3000 psi in 5 or 55 gallon reservoirs. This work intends to reveal the challenges of working with a large scale Direct Ink Writing (DIW) process and how to overcome them. Two material chemistries have been scaled up for this system and are presented herein: a peroxide cured vinyl ester and latent cured epoxy-anhydrides. Factors such as pumpability, printability, and performance vary significantly between these systems and are discussed using rheological characterization, modeling, printing setup and parameters, and part design. Figure Please click Additional Files below to see the full abstract

    Literacy practices of primary education children in Andalusia (Spain): a family-based perspective

    Get PDF
    Primary school children develop literacy practices in various domains and situations in everyday life. This study focused on the analysis of literacy practices of children aged 8–12 years from the perspec- tive of their families. 1,843 families participated in the non-experimental explanatory study. The children in these families speak Spanish as a first language and are schooled in this language. The instrument used was a self-report questionnaire about children’s home-literacy practices. The data obtained were analysed using categorical principal components analysis (CATPCA) and analysis of variance (ANOVA). The results show the complex relationship between literacy practices developed by children in the domains of home and school and the limited development of a literacy-promoting ‘third space’. In conclusion, the families in our study had limited awareness of their role as literacy- promoting agents and thought of literacy learning as restricted to formal or academic spaces

    GAMATCH

    Full text link

    An Efficient Data Structure for Dynamic Two-Dimensional Reconfiguration

    Full text link
    In the presence of dynamic insertions and deletions into a partially reconfigurable FPGA, fragmentation is unavoidable. This poses the challenge of developing efficient approaches to dynamic defragmentation and reallocation. One key aspect is to develop efficient algorithms and data structures that exploit the two-dimensional geometry of a chip, instead of just one. We propose a new method for this task, based on the fractal structure of a quadtree, which allows dynamic segmentation of the chip area, along with dynamically adjusting the necessary communication infrastructure. We describe a number of algorithmic aspects, and present different solutions. We also provide a number of basic simulations that indicate that the theoretical worst-case bound may be pessimistic.Comment: 11 pages, 12 figures; full version of extended abstract that appeared in ARCS 201

    Differential Cross Section for γ d →ωd Using CLAS at Jefferson Lab

    Get PDF
    The cross section for coherent ω-meson photoproduction off the deuteron has been measured for the first time as a function of the momentum transfer t=(Pγ−Pω)2 and photon energy Eγ using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The cross sections are measured in the energy range 1.4 γ\u3c3.4 GeV. A model based on ω−N rescattering is consistent with the data at low and intermediate momentum transfer, |t|. For 2.8 γ\u3c3.4 GeV, the total cross-section of ω−N scattering, based on fits within the framework of the Vector Meson Dominance model, is in the range of 30–40 mb

    A synthetic electric force acting on neutral atoms

    Full text link
    Electromagnetism is a simple example of a gauge theory where the underlying potentials -- the vector and scalar potentials -- are defined only up to a gauge choice. The vector potential generates magnetic fields through its spatial variation and electric fields through its time-dependence. We experimentally produce a synthetic gauge field that emerges only at low energy in a rubidium Bose-Einstein condensate: the neutral atoms behave as charged particles do in the presence of a homogeneous effective vector potential. We have generated a synthetic electric field through the time dependence of an effective vector potential, a physical consequence even though the vector potential is spatially uniform

    The Implications of the Microwave Background Anisotropies for Laser-Interferometer-Tested Gravitational Waves

    Full text link
    The observed microwave background anisotropies in combination with the theory of quantum mechanically generated cosmological perturbations predict a well measurable amount of relic gravitational waves in the frequency intervals tested by LISA and ground-based laser interferometers.Comment: revised, corrected, and slightly expanded version to be published in Classical and Quantum Gravity; 22 pages, 1 Postscript figure, Latex; Based on a talk presented at the First Internationsl LISA Symposium, 9 - 12 July 1996, RAL, U

    Minimax Current Density Coil Design

    Full text link
    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements with uniform current, cylindrical elements with sinusoidal current and conic section elements with sinusoidal-uniform current) were used with this approach to illustrate its generality.Comment: 24 pages, 6 figures, 2 tables. To appear in Journal of Physics D: Applied Physic

    Kinematics and hydrodynamics of spinning particles

    Full text link
    In the first part (Sections 1 and 2) of this paper --starting from the Pauli current, in the ordinary tensorial language-- we obtain the decomposition of the non-relativistic field velocity into two orthogonal parts: (i) the "classical part, that is, the 3-velocity w = p/m OF the center-of-mass (CM), and (ii) the so-called "quantum" part, that is, the 3-velocity V of the motion IN the CM frame (namely, the internal "spin motion" or zitterbewegung). By inserting such a complete, composite expression of the velocity into the kinetic energy term of the non-relativistic classical (i.e., newtonian) lagrangian, we straightforwardly get the appearance of the so-called "quantum potential" associated, as it is known, with the Madelung fluid. This result carries further evidence that the quantum behaviour of micro-systems can be adirect consequence of the fundamental existence of spin. In the second part (Sections 3 and 4), we fix our attention on the total 3-velocity v = w + V, it being now necessary to pass to relativistic (classical) physics; and we show that the proper time entering the definition of the four-velocity v^mu for spinning particles has to be the proper time tau of the CM frame. Inserting the correct Lorentz factor into the definition of v^mu leads to completely new kinematical properties for v_mu v^mu. The important constraint p_mu v^mu = m, identically true for scalar particles, but just assumed a priori in all previous spinning particle theories, is herein derived in a self-consistent way.Comment: LaTeX file; needs kapproc.st
    corecore