228 research outputs found

    Counting Is Not Enough: Investing in Qualitative Case Reviews for Practice Improvement in Child Welfare

    Get PDF
    Outlines the value of quality case service reviews in child welfare systems, requirements for building and sustaining a robust process and adapting it under limited state budgets, and recommendations for jurisdictions, initiators, and national leadership

    The Joint Archives Quarterly, Volume 33.01: Spring 2023

    Get PDF

    Examining the link between chromosomal instability and aneuploidy in human cells

    Get PDF
    Solid tumors can be highly aneuploid and many display high rates of chromosome missegregation in a phenomenon called chromosomal instability (CIN). In principle, aneuploidy is the consequence of CIN, but the relationship between CIN and aneuploidy has not been clearly defined. In this study, we use live cell imaging and clonal cell analyses to evaluate the fidelity of chromosome segregation in chromosomally stable and unstable human cells. We show that improper microtubule–chromosome attachment (merotely) is a cause of chromosome missegregation in unstable cells and that increasing chromosome missegregation rates by elevating merotely during consecutive mitoses generates CIN in otherwise stable, near-diploid cells. However, chromosome missegregation compromises the proliferation of diploid cells, indicating that phenotypic changes that permit the propagation of nondiploid cells must combine with elevated chromosome missegregation rates to generate aneuploid cells with CIN

    Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs

    Get PDF
    The MBNL and CELF proteins act antagonistically to control the alternative splicing of specific exons during mammalian postnatal development. This process is dysregulated in myotonic dystrophy because MBNL proteins are sequestered by (CUG)n and (CCUG)n RNAs expressed from mutant DMPK and ZNF9 genes, respectively. While these observations predict that MBNL proteins have a higher affinity for these pathogenic RNAs versus their normal splicing targets, we demonstrate that MBNL1 possesses comparably high affinities for (CUG)n and (CAG)n RNAs as well as a splicing target, Tnnt3. Mapping of a MBNL1-binding site upstream of the Tnnt3 fetal exon indicates that a preferred binding site for this protein is a GC-rich RNA hairpin containing a pyrimidine mismatch. To investigate how pathogenic RNAs sequester MBNL1 in DM1 cells, we used a combination of chemical/enzymatic structure probing and electron microscopy to determine that MBNL1 forms a ring-like structure which binds to the dsCUG helix. While the MBNL1 N-terminal region is required for RNA binding, the C-terminal region mediates homotypic interactions which may stabilize intra- and/or inter-ring interactions. Our results provide a mechanistic basis for dsCUG-induced MBNL1 sequestration and highlight a striking similarity in the binding sites for MBNL proteins on splicing precursor and pathogenic RNAs

    Resolving Holliday Junctions with Escherichia coli UvrD Helicase

    Get PDF
    The Escherichia coli UvrD helicase is known to function in the mismatch repair and nucleotide excision repair pathways and has also been suggested to have roles in recombination and replication restart. The primary intermediate DNA structure in these two processes is the Holliday junction. UvrD has been shown to unwind a variety of substrates including partial duplex DNA, nicked DNA, forked DNA structures, blunt duplex DNA and RNA-DNA hybrids. Here, we demonstrate that UvrD also catalyzes the robust unwinding of Holliday junction substrates. To characterize this unwinding reaction we have employed steady-state helicase assays, pre-steady-state rapid quench helicase assays, DNaseI footprinting, and electron microscopy. We conclude that UvrD binds initially to the junction compared with binding one of the blunt ends of the four-way junction to initiate unwinding and resolves the synthetic substrate into two double-stranded fork structures. We suggest that UvrD, along with its mismatch repair partners, MutS and MutL, may utilize its ability to unwind Holliday junctions directly in the prevention of homeologous recombination. UvrD may also be involved in the resolution of stalled replication forks by unwinding the Holliday junction intermediate to allow bypass of the blockage

    The Grizzly, March 2, 1993

    Get PDF
    Airband Raises Over $1300 for Charity • The United States of Europe with Modern Languages • Explosion at World Trade Center • Meistersingers to Tour New England • Flowers of Hope • Senior Profile: Maria Rojas • The Problem With Centrists • Men\u27s Track and Field at MACs • Gymnasts Finish With High Scorehttps://digitalcommons.ursinus.edu/grizzlynews/1311/thumbnail.jp

    Tethering Telomeric Double- and Single-stranded DNA-binding Proteins Inhibits Telomere Elongation

    Get PDF
    Mammalian telomeres are composed of G-rich repetitive double-stranded (ds) DNA with a 3' single-stranded (ss) overhang and associated proteins that together maintain chromosome end stability. Complete replication of telomeric DNA requires de novo elongation of the ssDNA by the enzyme telomerase, with telomeric proteins playing a key role in regulating telomerase-mediated telomere replication. In regards to the protein component of mammalian telomeres, TRF1 and TRF2 bind to the dsDNA of telomeres, whereas POT1 binds to the ssDNA portion. These three proteins are linked through either direct interactions or by the proteins TIN2 and TPP1. To determine the biological consequence of connecting telomeric dsDNA to ssDNA through a multiprotein assembly, we compared the effect of expressing TRF1 and POT1 in trans versus in cis in the form of a fusion of these two proteins, on telomere length in telomerase-positive cells. When expressed in trans these two proteins induced extensive telomere elongation. Fusing TRF1 to POT1 abrogated this effect, inducing mild telomere shortening, and generated looped DNA structures, as assessed by electron microscopy, consistent with the protein forming a complex with dsDNA and ssDNA. We speculate that such a protein bridge between dsDNA and ssDNA may inhibit telomerase access, promoting telomere shortening

    The Grizzly, April 6, 1993

    Get PDF
    Mr. Ursinus, 1993 • ProTheatre\u27s Actors Deliver in Thornwood • Another Weekend of Fighting in Reimert • Changes in Housing Selection • Wismer Renovations • Waco Standoff Continues • Your Chance to Give • Access to the Vault • Congratulations to P.O.D. for Excelling in Blood Drive • Daffodils for Service • Senior Profile: Allen Clowers • Why Can\u27t I Pick my Classes? • Letters to the Editor • Seniors Return, but Bears Fall • Men\u27s LAX Wants to Be Official • Men\u27s Tennis Young and Improvinghttps://digitalcommons.ursinus.edu/grizzlynews/1314/thumbnail.jp

    C. elegans Telomeres Contain G-Strand and C-Strand Overhangs that Are Bound by Distinct Proteins

    Get PDF
    Single-strand extensions of the G strand of telomeres are known to be critical for chromosome-end protection and length regulation. Here, we report that in , chromosome termini possess 3′ G-strand overhangs as well as 5′ C-strand overhangs. C tails are as abundant as G tails and are generated by a well-regulated process. These two classes of overhangs are bound by two single-stranded DNA binding proteins, CeOB1 and CeOB2, which exhibit specificity for G-rich or C-rich telomeric DNA. Strains of worms deleted for CeOB1 have elongated telomeres as well as extended G tails, whereas CeOB2 deficiency leads to telomere-length heterogeneity. Both CeOB1 and CeOB2 contain OB (oligo-saccharide/oligo-nucleotide binding) folds, which exhibit structural similarity to the second and first OB folds of the mammalian telomere binding protein hPOT1, respectively. Our results suggest that telomere homeostasis relies on a novel mechanism that involves 5′ and 3′ single-stranded termini

    The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA

    Get PDF
    Individuals with BRCA2 mutations are predisposed to breast cancers owing to genome instability. To determine the functions of BRCA 2, the human protein was purified. It was found to bind selectively to single-stranded DNA (ssDNA), and to ssDNA in tailed duplexes and replication fork structures. Monomeric and dimeric forms of BRCA 2 were observed by EM. BRCA 2 directed the binding of RA D51 recombinase to ssDNA, reduced the binding of RA D51 to duplex DNA and stimulated RA D51-mediated DNA strand exchange. These observations provide a molecular basis for the role of BRCA 2 in the maintenance of genome stability
    • …
    corecore