57 research outputs found

    Statistical Inference for Ergodic Algorithmic Model (EAM), Applied to Hydrophobic Hydration Processes

    Get PDF
    Abstract: The thermodynamic properties of hydrophobic hydration processes can be represented in probability space by a Dual‐Structure Partition Function {DS‐PF} = {M‐PF} ∙ {T‐PF}, which is the product of a Motive Partition Function {M‐PF} multiplied by a Thermal Partition Function {T‐PF}. By development of {DS‐PF}, parabolic binding potential functions α) RlnKdual = (–ΔG°dual/T) ={f(1/T)*g(T)} and ÎČ) RTlnKdual = (–ΔG°dual) = {f(T)*g(lnT)} have been calculated. The resulting binding functions are “convoluted” functions dependent on the reciprocal interactions between the primary function f(1/T) or f(T) with the secondary function g(T) or g(lnT), respectively. The binding potential functions carry the essential thermodynamic information elements of each system. The analysis of the binding potential functions experimentally determined at different temperatures by means of the Thermal Equivalent Dilution (TED) principle has made possible the evaluation, for each compound, of the pseudo‐stoichiometric coefficient Οw, from the curvature of the binding potential functions. The positive value indicates convex binding functions (Class A), whereas the negative value indicates concave binding function (Class B). All the information elements concern sets of compounds that are very different from one set to another, in molecular dimension, in chemical function, and in aggregation state. Notwithstanding the differences between, surprising equal unitary values of niche (cavity) formation in Class A <hfor>A= –22.7 kJmol−1 Οw−1 sets with standard deviation σ= 3.1% and <sfor>A = –445JK−1mol−1Οw−1JK−1mol−1Οw−1 with standard deviation σ= 0.7%. Other surprising similarities have been found, demonstrating that all the data analyzed belong to the same normal statistical population. The Ergodic Algorithmic Model (EAM) has been applied to the analysis of important classes of reactions, such as thermal and chemical denaturation, denaturation of proteins, iceberg formation or reduction, hydrophobic bonding, and null thermal free energy. The statistical analysis of errors has shown that EAM has a general validity, well beyond the limits of our experiments. Specifically, the properties of hydrophobic hydration processes as biphasic systems generating convoluted binding potential functions, with water as the implicit solvent, hold for all biochemical and biological solutions, on the ground that they also are necessarily diluted solutions, statistically validated

    Ergodic Algorithmic Model (EAM), with Water as Implicit Solvent, in Chemical, Biochemical, and Biological Processes

    Get PDF
    For many years, we have devoted our research to the study of the thermodynamic properties of hydrophobic hydration processes in water, and we have proposed the Ergodic Algorithmic Model (EAM) for maintaining the thermodynamic properties of any hydrophobic hydration reaction at a constant pressure from the experimental determination of an equilibrium constant (or other potential functions) as a function of temperature. The model has been successfully validated by the statistical analysis of the information elements provided by the EAM model for about fifty compounds. The binding functions are convoluted functions, RlnKeq = {f(1/T)* g(T)} and RTlnKeq = {f(T)* g(lnT)}, where the primary linear functions f(1/T) and f(T) are modified and transformed into parabolic curves by the secondary functions g(T) and g(lnT), respectively. Convoluted functions are consistent with biphasic dual-structure partition function, {DS-PF} = {M-PF} · {T-PF} · {ζw}, composed by ({M-PF} (Density Entropy), {T-PF}) (Intensity Entropy), and {ζw} (implicit solvent). In the present paper, after recalling the essential aspects of the model, we outline the importance of considering the solvent as “implicit” in chemical and biochemical reactions. Moreover, we compare the information obtained by computer simulations using the models till now proposed with “explicit” solvent, showing the mess of information lost without considering the experimental approach of the EAM model

    Metal-Chelating 2‑Hydroxyphenyl Amide Pharmacophore for Inhibition of Influenza Virus Endonuclease

    Get PDF
    The influenza virus PA endonuclease is an attractive target for development of novel anti-influenza virus therapeutics. Reported PA inhibitors chelate the divalent metal ion(s) in the enzyme’s catalytic site, which is located in the Nterminal part of PA (PA-Nter). In this work, a series of 2- hydroxybenzamide-based compounds have been synthesized and biologically evaluated in order to identify the essential pharmacophoric motif, which could be involved in functional sequestration of the metal ions (probably Mg2+) in the catalytic site of PA. By using HL1, H2L2, and HL3 as model ligands with Mg2+ ions, we isolated and fully characterized a series of complexes and tested them for inhibitory activity toward PA-Nter endonuclease. H2L2 and the corresponding Mg2+ complex showed an interesting inhibition of the endonuclease activity. The crystal structures of the uncomplexed HL1 and H2L2 and of the isolated magnesium complex [Mg(L3)2(MeOH)2]·2MeOH were solved by X-ray diffraction analysis. Furthermore, the speciation models for HL1, H2L2, and HL3 with Mg2+ were obtained, and the formation constants of the complexes were measured. Preliminary docking calculations were conducted to investigate the interactions of the title compounds with essential amino acids in the PANter active site. These findings supported the “two-metal” coordination of divalent ions by a donor triad atoms chemotype as a powerful strategy to develop more potent PA endonuclease inhibitors

    Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles

    Get PDF
    Biological and thermodynamic properties of a new homologous series of highly fluorinated bispyridinium cationic gemini surfactants, differing in the length of the spacer bridging the pyridinium polar heads in 1,10 position, are reported for the first time. Interestingly, gene delivery ability is closely associated with the spacer length due to a structural change of the molecule in solution. This conformation change is allowed when the spacer reaches the right length, and it is suggested by the trends of the apparent and partial molar enthalpies vs molality. To assess the compounds’ biological activity, they were tested with an agarose gel electrophoresis mobility shift assay (EMSA), MTT proliferation assay and Transient Transfection assays on a human rhabdomyosarcoma cell line. Data from atomic force microscopy (AFM) allow for morphological characterization of DNA nanoparticles. Dilution enthalpies, measured at 298 K, enabled the determination of apparent and partial molar enthalpies vs molality. All tested compounds (except that with the longest spacer), at different levels, can deliver the plasmid when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE). The compound with a spacer formed by eight carbon atoms gives rise to a gene delivery ability that is comparable to that of the commercial reagent. The compound with the longest spacer compacts DNA in loosely condensed structures by forming bows, which are not suitable for transfection. Regarding the compounds’ hydrogenated counterparts, the tight relationship between the solutio

    From ligand to complexes: Part 2: Remarks on human immunodeficiency virus type 1 integrase inhibition by beta-diketo acid metal complexes

    Get PDF
    In a previous work we reported results about the coordination ability of the diketo acid pharmacophore, and discussed on the anti-HIV-1 IN activity of a series of synthesized ÎČ-diketo acid metal complexes. Herein, a further extension of this study is reported. In particular, a new set of complexes with different stoichiometry was synthesized, and a series of potentiometric measurements were conducted for two diketo acids as model ligands in the presence of other divalent metal ions in order to outline a speciation model. The first X-ray solved structure of a diketo acid metal complex is presented. Moreover, we tested the obtained complexes for anti-HIV 1 IN activity. Furthermore, detailed docking studies were conducted in order to investigate the mode of binding of the free ligands compared with their metal complexes on the active site

    On the mechanism of the cholesterol lowering ability of soluble dietary fibers: Interaction of some bile salts with pectin, alginate, and chitosan studied by isothermal titration calorimetry

    No full text
    Reducing high blood cholesterol is an important strategy to decrease the chances of a cardiovascular disease occurrence, the main cause of mortality in western developed countries. Therefore, the search for an alternative therapeutic or preventive approach being natural, biocompatible, and not toxic is still more relevant than ever. This need is particularly felt in Pediatrics for treating childhood hypercholesterolemia, due to statins interference in the production of steroid hormones in prepuberal children. Notwithstanding the general acceptance of the healthy role of the fibers in the diet, the mechanism underlying the cholesterol-lowering ability of soluble fibers is still under discussion. Therefore, we started a systematic study of the binding ability of some soluble dietary fibers (SDF) originated from different natural sources toward selected bile salts (BS) by isothermal titration calorimetry (ITC). Here we report the results of our ITC studies on the interaction of alginate, pectin and chitosan with sodium cholate (NaC), sodium deoxycholate (NaDC), sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC). Thermodynamic data on the micelle formation process of the above bile salts, as a premise to the study of their binding ability to the SDF, are also reported. Alginate does not show specific binding interaction with BS, while pectin shows a strong exothermic bond with NaDC in monomeric form. Chitosan, positively charged and soluble only at low pH, shows strong exothermic interactions with NaTC and NaTDC (soluble at pH = 3 in acetate buffer) with precipitate formation. For NaTC, the exothermic peak starts at about 5 mM. At this concentration NaTC bound on the fiber reaches locally the cmc value and micelles start forming on the fiber inducing its conformational change. For NaTDC the same process occurs at much lower concentrations, due to lower cmc, and with a greater quantity of heat involved. The first set of results here presented shows that for some SDF the binding of BS could be an important mechanism in cholesterol lowering but not the only one. The information here presented could be a starting point for the design of optimized functional foods with high cholesterol lowering ability

    Ergodic Algorithmic Model (EAM), with Water as Implicit Solvent, in Chemical, Biochemical, and Biological Processes

    No full text
    For many years, we have devoted our research to the study of the thermodynamic properties of hydrophobic hydration processes in water, and we have proposed the Ergodic Algorithmic Model (EAM) for maintaining the thermodynamic properties of any hydrophobic hydration reaction at a constant pressure from the experimental determination of an equilibrium constant (or other potential functions) as a function of temperature. The model has been successfully validated by the statistical analysis of the information elements provided by the EAM model for about fifty compounds. The binding functions are convoluted functions, RlnKeq = {f(1/T)* g(T)} and RTlnKeq = {f(T)* g(lnT)}, where the primary linear functions f(1/T) and f(T) are modified and transformed into parabolic curves by the secondary functions g(T) and g(lnT), respectively. Convoluted functions are consistent with biphasic dual-structure partition function, {DS-PF} = {M-PF} ∙ {T-PF} ∙ {ζw}, composed by ({M-PF} (Density Entropy), {T-PF}) (Intensity Entropy), and {ζw} (implicit solvent). In the present paper, after recalling the essential aspects of the model, we outline the importance of considering the solvent as “implicit” in chemical and biochemical reactions. Moreover, we compare the information obtained by computer simulations using the models till now proposed with “explicit” solvent, showing the mess of information lost without considering the experimental approach of the EAM model

    Solubility of Oxygen and inert substances in water

    No full text
    The solubility of oxygen in water at different temperatures has been analysed in the light of a statistical thermodynamic model. According to the model, the oxygen–water system is considered as a convoluted ensemble consisting of a reacting system, formed by oxygen molecules and structured solvent with enthalpy difference DHf between discrete enthalpy levels, and of a non-reacting system with continuous distribution of enthalpy levels. The enthalpy change of the reaction between oxygen and water, as determined either by measuring the solubility of substances in water at different temperatures either by measuring heat calorimetrically, is partially absorbed by some nw water molecules. The relaxed water molecules occupy part of the cavity formed around solute. The part of heat absorbed, DHw depends linearly upon the temperature and causes the observed changes with temperature of apparent enthalpy DHapp for the dissolution of oxygen and many other inert substances in water. The number nw is proportional to the size of solute as shown by comparison with noble gases and other inert substances slightly soluble in water. The solubilization process of all these substances is clearly analogous
    • 

    corecore