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Abstract: For many years, we have devoted our research to the study of the thermodynamic proper-
ties of hydrophobic hydration processes in water, and we have proposed the Ergodic Algorithmic
Model (EAM) for maintaining the thermodynamic properties of any hydrophobic hydration reaction
at a constant pressure from the experimental determination of an equilibrium constant (or other
potential functions) as a function of temperature. The model has been successfully validated by
the statistical analysis of the information elements provided by the EAM model for about fifty com-
pounds. The binding functions are convoluted functions, RlnKeq = {f (1/T)* g(T)} and RTlnKeq =
{f (T)* g(lnT)}, where the primary linear functions f (1/T) and f (T) are modified and transformed into
parabolic curves by the secondary functions g(T) and g(lnT), respectively. Convoluted functions
are consistent with biphasic dual-structure partition function, {DS-PF} = {M-PF} · {T-PF} · {ζw},
composed by ({M-PF} (Density Entropy), {T-PF}) (Intensity Entropy), and {ζw} (implicit solvent). In
the present paper, after recalling the essential aspects of the model, we outline the importance of
considering the solvent as “implicit” in chemical and biochemical reactions. Moreover, we compare
the information obtained by computer simulations using the models till now proposed with “explicit”
solvent, showing the mess of information lost without considering the experimental approach of the
EAM model.

Keywords: hydrophobic hydration process; Ergodic Algorithmic Model (EAM); Thermal Equivalent
Dilution (TED); implicit solvent; intensity entropy; density entropy

1. Introduction

We accept in advance the suggestion of Lambert [1,2], who led a campaign against the
theory which considers entropy as a parameter of disorder of the system. According to
Lambert, entropy is a parameter of energy dispersion. It can be considered a parameter
of disorder in as much as disorder is associated with energy. For instance, the sand of
a beach is completely disordered unless at zero entropy, because there is no energy. By
accepting the proposal of Lambert, we agree to defining free energy as a sum of two terms,
Intensity Entropy (−∆H/T) and Density Entropy (∆S). The former function indicates
the dispersion of energy produced by increasing temperature, T, which increases the
velocity of the molecules, while the latter function indicates the dispersion of energy by
increasing the dilution of the chemical species. We analysed the thermodynamic properties
of hydrophobic hydration processes in water in a set of articles [3–9] and proposed the
Ergodic Algorithmic Model (EAM) for maintaining the thermodynamic properties of any
hydrophobic hydration reaction at a constant pressure.

If we want to obtain the thermodynamic functions of a chemical process, we plot the
experimental data of an equilibrium constant RlnKdual, or other potential function RlnKeq,
measured at different temperatures, as the function of (1/T), obtaining the convoluted
parabolic binding function α) RlnKdual = {f (1/T)* g(T)}. If we plot the values of RTlnKdual as
the function of T we obtain the convoluted parabolic binding function β) RTlnKdual = {f (T)*
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g(lnT)}. The binding functions are convoluted functions, where the primary linear func-
tions f(1/T)and f(T)are modified and transformed into parabolic curves by the secondary
functions g(T) and g(lnT), respectively. The constant factor R (gas constant) is introduced
as a normalisation constant, to guarantee that we are referring to an Avogadro number
of particles. Convoluted functions are consistent with biphasic dual-structure partition
function, {DS-PF} = {M-PF} · {T-PF} · {ζw}, composed by ({M-PF} (Density Entropy), {T-
PF}) (Intensity Entropy), and {ζw} (Implicit Solvent). In contrast, the functions obtained by
simulation methods do not consider the free energy as a thermodynamic potential function
(−∆G/RT) = (−∆H/RT) + (∆S/R) composed by two terms (Intensity Entropy (−∆H/RT) and
Density Entropy (∆S/R)), specific for each hydrophobic hydration process. Simulations,
referred to a conventional mono-phasic potential function or pseudo-free energy function,
as proposed by other researchers, ignore the existence of the different structures of Intensity
Entropy (−∆H/RT) and Density Entropy (∆S/R). The formal functions used in simulations
are inconsistent with the dual biphasic structure of every experimental hydrophobic hy-
dration system, with partition function composed by the product of a partition function
{M-PF} · {T-PF} multiplied by the partition function of the implicit solvent ({ζw}). The
list of thermodynamic information elements provided by the Ergodic Algorithmic Model
(EAM) and calculated by us for about fifty compounds was analysed by statistical analysis
methodologies and successfully validated [8].

Thermal Equivalent Dilution (TED): Ergodicity

The Ergodic Algorithmic Model (EAM) is a set of mathematical equations whereby it
is possible to extract from a series of experimental determinations of equilibrium constants,
lnK, or other equivalent potential functions measured at different temperatures, the ther-
modynamic properties of any hydrophobic hydration reaction, by exploiting the Thermal
Equivalent Dilution (TED) principle [3–9]. The TED principle can be represented by the
equality

nwCp,wdlnT = Rdlndid,A (1)

where did,A = 1/xA is ideal dilution; xA is the molecular fraction of species A; Cp,w = 75.36 J
K−1 mol−1 is the molar heat capacity of liquid water and R = 8.314 J·mol−1 K−1 is the gas
constant. The expression in Equation (1) can be considered as the ergodicity parameter of a
system.

With reference to Figure 1a, representing a series of hyperbolas:

exp(−∆G/RT) = exp(−∆H/RT) exp(∆S/R) (2)

Figure 1. Hyperbolic partition functions in probability space. (a) exp(−∆Γ/T) = exp(−∆G·(cos
45◦)/RT); (b) exp(−∆GA/RT) = exp(−∆HA/RT) exp(∆SA/R).

The EAM model consists of a correct determination of the coordinates of a point A (x,y),
with X = exp(∆SA/R) and y = exp(−∆HA/RT). By referring one equation to a given process,
we choose one hyperbole of the family, corresponding to a point P on the auxiliary axis z
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of the diagram. Then, by choosing (Figure 1b) the value of ordinate y (exp(−∆HA/RT))
and the value of abscissa x (exp(∆SA/R)) of point A (or of point B, or C), we choose a
point on that hyperbola, thus reaching all the information elements available. Instead,
this point A (or B or C) cannot be chosen by computer simulation. This is the essential
information element that we lose by employing computer simulations: we cannot fix a
point referring to the specific system on the chosen hyperbola. On the auxiliary coplanar
axis z, we read the scale of values of point P, exp(−∆Γ/RT) = (exp(−∆G/RT) cos 45◦, with
xP = yP. By computer simulation, we might perhaps choose the correct hyperbola P, but we
cannot fix any point A for a specific reaction, losing all the essential information elements
carried by the coordinates of A, −∆HA/RT, Intensity Entropy and ∆SA/R, Density Entropy,
respectively.

2. Free Energy
2.1. Thermodynamic Free Energy

The probability space of Figure 1, representing the exponential functions, generates
the thermodynamic space of Figure 2 respectively, where the exponentials are represented
in an orthogonal axis system. In this system, the abscissa xA represents Density Entropy
and the ordinate yA represents Intensity Entropy. The hyperbolas of the exponential
diagram are transformed into a set of parallel lines, orthogonal to the diagonal auxiliary
axis (−∆Γ/T) = (−∆G/RT) · (cos 45◦). The coordinates of point A can be determined by
experimental determination of RlnKmot = (−∆G/T) = (−∆H/T) + (∆S/T), measured at
different temperatures T, and analysed following the Ergodic Algorithmic Model (EAM).
In contrast, computer simulations [10] might even guess (Figure 1a) the correct vector P
(−∆Γ/T), marked in blue in Figure 1a, but ignore the vectors (∆SA) + (−∆HA/T), marked
in red in Figure 2b, thus losing all the information elements carried by these vectors.
Computer simulations, in search for a potential function RlnK = f(x) to represent as the
function of a variable x, calculate the function

RlnK(P) = (−∆G(P)◦/RT) = (−∆Γ/RT)/(cos 45◦) (3)

Figure 2. Vector representation of free energy in thermodynamic space (a) RlnK = (−∆Γ/T)/cos 45◦ =
(−∆G/T); (b) RlnK = −∆G/T = −∆H/T + ∆S.

This function assumes implicitly that (−∆H(P)/T) = (∆S(P)) on the diagonal, thus
cancelling any difference, between the enthalpy parameter (or Intensity Entropy) and the
entropy parameter (or Density Entropy). The computer-simulated function, not considering
the difference between the two terms, Intensity Entropy and Density Entropy, cancels all
the information elements contained there, and characterises each specific reaction, A, B, or
C, at points A, B, or C, respectively. By applying the Ergodic Algorithmic Model (EAM) to a
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set of potential parameters (e.g., RlnKdual or RTnKdual), referring to one specific hydrophobic
hydration process, experimentally determined at different temperatures, one can calculate
the binding functions

α) RlnKdual = {f(1/T)·g(T)} (4)

and
β) RTlnKdual = {f (T)·g(lnT)} (5)

which are “convoluted” functions. By developing the convoluted functions, one can
calculate the primary motive functions, f(1/T) and f(T), respectively, of the convolution:

RlnKmot = (−∆Hmot/T) + (∆Smot) (6)

RTlnKmot = (−∆H0) + (T∆Smot) (7)

The two terms of each motive function are specific for each compound and suited to
recover the information elements of each hydrophobic hydration process. Other additional
important information elements are produced by analysing the secondary function g(T)
and g(lnT) of each convolution, such as ±ξw, the pseudo-stoichiometric number of water
molecules WI. The pseudo-stoichiometric number ±ξw is calculated from the curvature
of the binding function, that is a concave function, with ∆Cp,hydr = ξw Cp,w >0 for Class A,
or a convex function, with ∆Cp,hydr = –ξw Cp,w < 0 for Class B. ξw = |nw| is the number of
water clusters WI involved in each process, and Cp,w = 75.36 J·K−1mol−1 is the molar heat
capacity of liquid water.

The difference between the functions calculated by the so-called “simulation” and
the convoluted binding functions obtained by applying the Ergodic Algorithmic Model
(EAM) can be expressed by stating that the function calculated by simulation is lnKsimul =
f (−∆G/T), without specifying coordinates of any point A, B, or C, etc. The assignment of
these equations means specifying, in the hyperbolic diagrams, the coordinates of each point,
A, B, or C, each point referring to one specific different hydrophobic reaction, with specific
properties and specific interrelations between properties for each family of compounds.

The complete set of equations constituting the Ergodic Algorithmic Model (EAM) are
reported in Appendix A. The information elements from EAM are shown in Table 1.

Table 1. Information elements from EAM.

∂(RlnKmot)/∂(1/T) = −∆H◦mot (J mol−1)

∂(RTlnKmot)/∂T = ∆S◦mot (J K−1 mol−1)

∆Cp,hydr = ±ξw Cp,w

with Cp,w = 75.36 J·K−1mol−1 (molar heat capacity for liquid water)

∆Cp,hydr = +ξw Cp,w (Class A, convex binding function)

∆Cp,hydr = −ξw Cp,w (Class B, concave binding function)

The simulated calculated function RlnKsimul is not suited to the study of these systems
because it refers to a model of a monophasic system, not conforming to the biphasic
composition [7] with implicit solvent of diluted aqueous systems and of biological solutions.
The inadequacy of the monophasic model for simulations leads to the loss of essential
information elements and to a pseudo-free energy potential function.

2.2. Pseudo-Free Energy Function

C. Chipot and A. Pohorille (Eds.) [10] published a book with title: “Free Energy
Calculations. Theory and Application in Chemistry and Biology”, where they treat the
problem of the calculation of free energy functions lnKsimul = f (−∆G/T). They optimize the
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function exp(−∆G/RT), but forget that thermodynamic free energy should be written and
calculated as

exp(−∆G/RT) = exp(−∆H/RT) · exp(∆S/R) (8)

with a distinction between the Density Entropy term (exp(∆S/R) and Intensity Entropy
term (exp(−∆H/RT)). Therefore, the name “Free Energy Calculations” should be changed
into that of “Conventional monophasic” partition function or into that of “pseudo-Free
Energy” function. If one is searching for a correct free energy procedure, one should set an
algorithm to calculate

(−∆G/RT) = {
∫

d(−∆H/RT) +
∫

d(∆S/R)} (9)

where the integral
∫

d(−∆H/RT) should in principle be calculated as MD function (MD
stands for molecular dynamics) and the integral

∫
d(∆S/R) should in principle be calculated

as the MC function (MC stands for Monte Carlo). If one does not know these algorithms to
calculate the integrals

∫
d(−∆H/RT) = << (−∆H/RT) >> and

∫
d(∆S/R)} = << (∆S/R) >>, one

can substitute the integral functions by the definite thermodynamic functions (−∆H/RT)
and (∆S/R), respectively, obtained by processing the experimental data, determined at
different temperatures, by applying the Ergodic Algorithmic Model (EAM). This means that
we can determine, in advance, the final value of the two separate integrals by processing
by EAM a set of potential functions, experimentally determined at three, four or more
temperatures, and, in force of the Thermal Equivalent Dilution (TED) principle, behaving
as dependent upon dilution. Another point ignored by Chipot and Pohorille [10,11] is
the introduction of the constant partition function ζw = 1, referring to water as an implicit
solvent at constant thermodynamic potential µs.

Following the EAM procedure means cutting off all the treatments of hydrophobic
processes produced according to the methods suggested by Chipot and Pohorille [10,11].

According to C. Chipot et al. [12], the methods targeted at the computation of free
energy differences can be clustered into four classes:

(i) Perturbation theory [10,11,13,14] and free energy perturbation (FEP) calculation [15,16];
(ii) Determination of gradients and integration thereof, i.e., thermodynamic integration-

like approach [17,18];
(iii) Histograms [12,19–21];
(iv) Non equilibrium work (NEW) [13,14,22,23].

Though NEW shares common theoretical foundations with FEP, the latter can be
assumed as a limiting case of the former [22].

Unfortunately, none of the eminent researchers [12–14,16,18,20–23] active in simula-
tion calculations have considered the thermodynamic free energy as composed by two
distinct terms, Density Entropy and Intensity Entropy. On the other hand, Chipot and
Pohorille and none of their followers have produced various sets of experimental data
satisfying the statistical analysis and presenting mean unitary values with extremely low
standard deviation. This important and decisive result was presented by us [8]. Free energy
in chemical thermodynamics is set in probability space as

exp(−∆G/RT) = exp(−∆H/RT) · exp(∆S/R) (10)

and in thermodynamic space as:

(−∆G/RT) = (−∆H/RT) + (∆S/R) (11)

The partition function of Equation (10) has a typical hyperbolic structure, wherein
exp(−∆H/RT) is representative of Intensity Entropy and exp(∆S/R) is representative of
Density Entropy (Figure 1), as different distinct properties of a thermodynamic system. By
choosing this free energy partition function, we accept that the thermodynamic system has
a specific structure, composed of two entropic terms, i.e., Entropy Intensity and Entropy
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Density, respectively. These systems are constituted by a binary structure composed by
a solvent at constant thermodynamic potential µs (implicit solvent) and a solution with
ergodic properties. These systems are represented in probability space by a dual-structure
partition function.

3. Explicit Solvent and Implicit Solvent

Chipot and Pohorille [10] assumed the model of “explicit” solvent for water for the
calculation of the pseudo-free energy. The “explicit” solvent [24] for water is incompat-
ible with the dual-structure partition function {DS-PF} = {M-PF} · {T-PF} · {ζw} of the
aqueous systems as proposed by EAM model [9]. {ζw} represents the partition function
of implicit solvent, at constant thermodynamic potential µs. These words explain the
difference between pseudo-free energy calculations and the Ergodic Algorithmic Model
(EAM). Pseudo-free energy calculations are applied to “explicit” solvent molecular systems,
with homogenous composition whereas EAM requires an “implicit” solvent model for
a dual system with biphasic composition. The dual system is composed by solvent in
excess (“implicit” solvent) and diluted solute, as proved by statistical analysis of errors,
extended to a large population of hydrophobic hydration processes [8]. Specifically, we
assume [9] that every aqueous solution, and particularly biological solutions, has a biphasic
composition, constituted by a solvent at constant potential (i.e., “implicit” solvent) and
a diluted solute. None of the systems studied by perturbation theory [10,11] and by free
energy perturbation (FEP) calculation [15] with determination of gradients and integration
thereof, i.e., the partition function {ζw}, give any contribution to the free energy of the
whole system, conforming to the characteristics of the “implicit” solvent. The assumption
of the “explicit” solvent for these systems would mean introducing a specific variable
partition function for the explicit solvent. This hypothetical function should be suited
to calculate a variable free energy contribution by the solvent, i.e., by the component at
constant potential, whose contribution to free energy is constantly zero. In other words, we
should introduce a partition function for the explicit solvent with the properties of implicit
solvent, which would mean accepting the implicit solvent as the correct choice.

Notwithstanding these drawbacks, the computer simulation method called FEP (Free
Energy Perturbation) [19] seems to have reached excellent results, (see Schrödinger Plat-
form). Starting from some basic assumptions, several eminent researchers have developed
a series of computer programs whereby an ingenious framework of mathematical rela-
tionships has been built up. We are dubious that these computer simulation methods
are reliable.

4. Free Energy: Intensity Entropy and Density Entropy Components

We endeavour now to discover whether it is possible to create a mathematical frame-
work, alternative to the pseudo-free energy function, with structures compatible with a
structure of free energy (−∆G/RT), considered as the sum of one Intensity Entropy term
(−∆H/RT) and one Density Entropy term (∆S/R), with the “implicit” solvent model. The
integrals

∫
d(−∆H/RT) and

∫
d(∆S/R)} of Equation (9) have the advantage that the results

of the integration can be substituted by the definite values of (−∆H/RT) and (∆S/R), re-
spectively, obtained from experimental determinations of appropriate potential functions,
processed by the Ergodic Algorithmic Model (EAM). The results of the application of EAM
are the expressions of the motive constants

RlnKmot = (−∆Hmot/T) + (∆S0) (12)

and
RTlnKmot = (−∆H0) + (∆Smot)T (13)

(see Equations (6) and (7)). Pseudo-free energy calculations are applied to “explicit”
solvent molecular systems with homogenous composition, whereas EAM requires an
“implicit” solvent model for a dual system, composed by solvent in excess (implicit solvent)
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and diluted solute. The authors of simulations focus on the application of free energy
perturbation methods utilizing MD for the calculation of protein–ligand binding affinities
in structure-based drug discovery projects. The simulations consider the basic expression

∆F(A→B) = FB − FA = kBT ln < exp[−(EB − EA)/kBT] > (14)

or Zwanzig equation, where T is the temperature and kB is Boltzmann’s constant. The
triangular brackets < and > denote an average over a simulation run for state A. In practice,
one runs a normal simulation for state A, but each time a new configuration is accepted,
the energy for state B is also computed. The difference between states A and B may be in
the atom types involved, in which case the ∆F obtained is for “mutating” one molecule
onto another, or it may be a difference of geometry, in which case one obtains an enthalpy
map along one or more reaction coordinates. In practice, the averages in Equation (14)
are obtained using the so-called λ-dynamics: E(λ) = (1−λ) · EA + λ · EB, where λ changes
smoothly from 0 to 1 (i.e., from state A to state B) in order to improve the sampling of
states [25].

5. Procedure According to Ergodic Algorithmic Model (EAM)

The dual system of every hydrophobic hydration process is represented in EAM by
a product of partition functions {DS-PF} = {M-PF} · {T-PFth} · {ζw}, whereby the Motive
Partition Function {M-PF}, referring to Density Entropy, is multiplied by a thermal partition
function {T-PF}, referring to Intensity Entropy, and by {ζw}, at constant potential (implicit
solvent). In mathematical format, we consider a partition function

exp(−∆Gdual/RT) = {(exp(-∆Hmot/RT) (exp(∆Smot/R)} = Kdual = Kmot·ζw (15)

with ζw = 1. According to EAM, the integration of differential functions cannot be applied to
free energy calculation because the chemical reacting component, represented by {DS-PF},
is ruled by binomial distribution, with the partition function composed by a limited sum of
finite arithmetic elements. EAM, however, considers an infinitesimal statistical distribution
of molecules within sublevels hj,i of each macrolevel Hi (see Figure 3).

Figure 3. The distribution of molecules over sublevels hi,j of each macrolevel Hi follows a statistical
distribution: passage of molecules from population h0,j to population hi,j can be calculated by
integration (HEP).

It is possible to apply the integration to the changing of distribution of molecules
among sublevels, ruled by the statistical distribution of a non-reacting subsystem. In
fact, the passage from one level to another implies a redistribution of molecules among
the levels Hi to Hi+1 of the transformed molecule. This level-to-level passage can be a
continuous process suitable for integration. The whole reaction also involves (Figure 4)
a change in the multiplicity of states and this transformation of moles can be expressed
by finite numbers, suitable for mathematical finite transformation corresponding to the
coefficients of chemical equation. We can consider the contributions by integration terms as
producing Intensity Entropy whereas the contributions by multiplicity mathematical terms
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as producing Density Entropy, respectively. The question now is: how can we exploit the
computer programs on the market to calculate the Ergodic Algorithmic Model?

Instead of Zwanzig Equation (16), we should employ the equation

∆H(A→B) = HB − HA = kBT ln < exp(<(−HB + HA)/kBT) > (16)

Figure 4. The distribution of moles over each macrolevel Hi follows a binomial mathematical distribu-
tion, not calculated by integration. Now, we have two methods for calculating partition functions.

(a) Calculation of convoluted binding functions from experimental determinations; then,
by applying EAM we derive Rln Kmot.

(b) Calculation of simulation functions according to HEP.

In the former case, the solvent is considered at constant potential, i.e., as implicit
solvent, whereas in the latter case the solvent is considered as explicit solvent.

In the calculation of the simulation function, we can consider the passage from one
level H0 to level H1 with a gradual change in molecular structure from one to another shape,
with a change in wave function. This passage consists of a change in Intensity Entropy: the
whole mole passage of Intensity Entropy corresponds to the experimental determination of
−∆H/T in the not Hoff function or similarly, in EAM to the slope of RlnKmot = −∆H/T +
∆S. The multiplicity within each macrolevel corresponds to Density Entropy change and is
measured in experimental thermodynamic space by the ∆S component and in EAM by the
slope of RTlnKmot = −∆H + T ∆S. There is correspondence between the two components of
the equation −∆G/T = −∆H/T + ∆S and the terms calculated from the experimental data
by applying RlnKmot in EAM.

The main achievements obtained by the Ergodic Algorithmic Model can be found in
references [7–9].

6. Thermodynamic Functions and Information Elements

The development of the Ergodic Algorithmic Model (EAM) applied to a series of
experimental data can show the relationships between thermodynamic functions and
information elements.

The information necessary to construct the motive functions can be obtained from the
definition of the primary functions f (1/T) of the binding function RlnKdual = {f (1/T)·g(T)}
and by the primary function f (T) of the binding function RTlndual = {f (T)·g(lnT)}. The
Ergodic Algorithmic Model (EAM) consists of the calculation and processing of the con-
voluted binding functions, to obtain the motive functions RlnKmot and RTlnKmot (Table 2).
The two motive functions contain the correct information elements concerning the leading
hydration process of the reaction, together with the thermodynamic properties of the
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chemical process associated with hydration. In carboxylic acids, for example, the reaction
associated with hydration is protonation of the base.

Table 2. Convoluted binding functions. Motive functions.

ENTHALPY ENTROPY

RlnKdual = −∆G◦/T = −∆Hdual/T + Sdual.
= −{∆Hmot+∆Cp,hydr,T}/T + ∆S’

where
∆Cp,hydr = 2202(∆Hdual)/∂T
∆C p,hydr = isobaric heat capacity(*)

RT lnKdual = −∆G◦ = −∆Hdual + T ∆Sdual
= −∆H’+T{∆Smot + ∆Cp,hydr lnT}

where
∆Cp,hyd = ∂(∆Sdual)∂lnT
∆Cp,hydr = isobaric heat capacity(*)

Motive Function
from primary function f (1/T) in

RlnKapp = {f ((1/T)*g(T)}

Motive Function
from primary function f (T) in

RTlnKapp = {f ((T)*g(lnT)}

R lnKmot = −(∆Hmot/T) + ∆S RT lnKmot = −∆Hmot +T ∆S◦

(*) ∆Cp ,hydr numerically equal for enthalpy and entropy: the same constant curvature amplitude (mathematical
constraint), the same molecular event, i.e., the same passage of state of water (chemical constraint).

The two binding functions RlnKdual = {f (1/T)·g(T)} and RTlndual = {f (T)·g(lnT)} have
a parabolic shape. The sign of these binding functions is sensible to the sign of ∆Cp,hydr
(Figure 5).

Figure 5. (a) The convexity of the parabolic function depends on the positive coefficient (∆Cp,hydr > 0);
(b) The concavity of the parabolic function depends on the negative coefficient (∆Cp,hydr < 0).

The correct procedure indicated by EAM is that followed by Talhout et al. when
studying the binding to trypsin of Hexa-benzamidimium chloride. These authors began by
determining by calorimetry the equilibrium constant of Hexa-benzamidimium chloride
binding to trypsin [26] (Class B), at different temperatures for a series of hydrophobically
modified benzamidinium chloride; then, they checked the results of simulations with the
experimental findings.

7. Dual-Structure Partition Function. Molecular Structures

The conclusion of these comparisons between simulation procedures and the Ergodic
Algorithmic Model (EAM) procedures is that computer simulations, although popular
in the physical chemistry community, must be implemented by considering the diphasic
structure of diluted systems. The reason for this criticism is that the mathematical functions
employed by computer simulations and pseudo-free energy calculations are derived for
a type of statistical ensemble not adequate for hydrophobic hydration processes. The
statistical ensemble assumed by Chipot and Pohorille [10] to calculate RlnKsimul = f (1/T)
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is monocentric and with a Boltzmann distribution with “explicit solvent”, whereas EAM
assumes that hydrophobic systems are represented by a dual-structure partition function

{DS-PF} = {M-PF} · {T-PF} · {ζ w} (17)

whereby the motive partition function {M-PF}, referring to the Density Entropy component
((−∆S)), is multiplied by a thermal partition function {T-PF}, referring to the Intensity
Entropy component (−∆H/T), as finite mathematical components. The partition function
{ζw} refers to the solvent at constant thermodynamic potential µs.

To each change in thermodynamic function, there corresponds a specific molecular
reaction. In Class A, whereby we obtain either the dissolution of a gas molecule or a liquid
molecule or another process implying an iceberg formation (Figure 6), the convex binding
functions RlnKdual = {f (1/T)·g(T)} and RTlnKdual = {f (T) · g(lnT)} are obtained. From the
secondary function g(T) of the convoluted binding function, RlnKdual = {f (1/T)·g(T)},

Figure 6. Class A. Reaction of iceberg formation.

We can obtain the information elements of Class A:

(a) (Reaction A {–ξw WI (solvent)→ ξw WII (iceberg, solute)}).
(b) Convexity (∆Cp,hydr = ξw Cp,w > 0).
(c) Iceberg size and water stoichiometry: ξw.

The same information elements are confirmed by the secondary function g(lnT) of the
convoluted binding function RTlndual = {f (T) g(lnT)}.

In Class B, where we obtain the reaction of iceberg reduction (Figure 7), we obtain the
information elements

(a) (reaction: B {–ξw WII (iceberg, solute)}→ ξw WI (solvent).
(b) Concavity (∆Cp,hydr = ξw Cp,w < 0).
(c) Iceberg size and water stoichiometry: ξw.
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Figure 7. Class B. Iceberg coalescing, with iceberg reduction.

From the coincidence of the value of entropy at zero iceberg ∆S0
(ξ w = 0) = –86.4J K−1

mol−1, (see reference [5]) with the Trouton constant ∆Heb/Teb = ∆Sevap = +86.9 ± 1.4 J K−1

mol−1, we can infer that the passage of gas molecules from the free state (Figure 8) to
the trapping into the solvent implies a change in entropy (as change in kinetic energy)
that is exactly the opposite of that for the passage from liquid state to vapor state (i.e.,
configuration entropy change for the condensation of gas is equal to the opposite of
evaporation, –∆Sevap).

Figure 8. Change in kinetic thermal energy (entropy change) for gas trapping in a cage and for
passage of vapor to liquid (condensation).

8. Structures of Thermodynamic Functions

At the end of the analysis of the structure of the thermodynamic functions of hy-
drophobic hydration processes, we can conclude:

(1) The simulated free energy functions RlnKsimul, as calculated by any simulation func-
tions, either FEP, or TI, MV, MC, etc., and applied to hydrophobic hydration processes
are inadequate to represent the properties of biphasic systems with implicit solvent.
Many important thermodynamic functions are ignored by these calculations and all
the important information elements carried by these functions are completely lost.

(2) The hydrophobic hydration systems have a biphasic composition, constituted by
a “non-reacting” molecule ensemble, at constant potential formed by the solvent
and by a “reacting” mole ensemble formed by diluted solutes. The distribution of
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molecules over the sublevels hi,j of each macrolevel Hi follows a Boltzmann distri-
bution, whereas the distribution of moles of reactants over macrolevels Hi follows
a binomial distribution. The Ergodic Algorithmic Model (EAM) is adequate to the
biphasic composition of aqueous solutions and suited to evaluate correctly the many
essential information elements.

The thermodynamic potential of each hydrophobic hydration process can be experi-
mentally determined at different temperatures and processed by the Ergodic Algorithmic
Model (EAM), obtaining convoluted binding functions (a) RlnKapp = {f (1/T)·g(T)} and (b)
RTlnKapp = {f (T)·g(lnT)} as developed from a dual-structure partition function {DS-PF}
= {M-PF} · {T-PF}, where the thermal partition function {T-PF} is the thermal partition
function of implicit solvent.

The statistical analysis of the unitary (for ξ = ±1) functions, which resulted to be
constant in a statistically significant population of data, calculated by processing the
curved binding functions, shows how the distribution of errors as a normal population
validates the Ergodic Algorithmic Model (EAM) as the correct dual-structure model for
the description of the thermodynamic properties of hydrophobic hydration processes.
The statistical validation of the EAM model, discussed in ref. [8], is also reported in
Appendix B. Another experimental method suited to the determinations of the information
elements of a thermodynamic system in aqueous solution is calorimetry. Freire [27,28]
showed how high affinity and selectivity, two essential properties of drugs, can be achieved
by the optimization of enthalpic and entropic contributions to binding (the so-called
“Thermodynamic Signatures”). If the calorimetric binding experiments are performed
at a different temperature, the complete set of information elements can be obtained
by applying the EAM model. This information is, therefore, essential not only from a
speculative point of view, but also for application purposes, such as, for instance, lead
optimization.

In any case, the statistical inference of Appendix B shows how the Ergodic Algorithmic
Model (EAM) has a universal validity for every hydrophobic hydration process [8] and
every hydrophobic hydration process must present the same behaviour. The functions
required by the EAM must necessarily exist, for statistical inference. The first step is the
search for an equilibrium constant or any appropriate potential function which is variable
with temperature. The next step consists of a verification that the system presents the
necessary ergodic properties. With these elements, one can determine the convoluted
binding functions and then build up the EAM model.

9. Conclusions

The use of the Ergodic Algorithmic Model (EAM) with water as implicit solvent
at constant thermodynamic potential µs, to calculate the thermodynamic properties of
hydrophobic hydration systems, is highly recommended, instead of computer simulations
with explicit solvent, the evaluation of only binding affinity not being enough either from a
speculative or practical point of view. Every hydrophobic hydration process necessarily
has the properties of an ergodic model, statistically validated. For a correct thermodynamic
analysis of any hydrophobic hydration process in chemical, biochemical, and biological
systems, these properties must be searched for.
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Appendix A

Table A1. Ergodic Algorithmic Model (EAM, see ref. [9]).

Probability Space
Dual-Structure Partition Function (for Biphasic Systems)

{DS-PF} = {T-PF} · {M-PF}{ζw}} = Kmot·1
{M-PF} = exp(∆Smot/R), {T-PF} = exp(−∆Hmot/RT), exp(−∆Gmot/RT) = Kmot
exp(−∆Hmot/RT) exp(∆Smot/R) = exp(−∆Gmot/RT) = Kdual
exp(Sdens/R) = aA

−1 = xA
−1 Φ−1 = xA

−1· TCp,A/R

exp(Sint/Cp,A) = T
Kdual = Kmot · ζth
ζth = 1 (Implicit Solvent, at constant Thermodynamic Potential µs)
{M-PF} = Kmot → (Solute, Density Entropy parameter)
{T-PF} = ζth = 1→ (Solute, Intensity Entropy parameter)
aA = xA · Φ (aA = activity of A, Φ = T−Cp,A/R: Lambert thermal factor)
Ergodicity→ (Dilution→ Temperature)
(1/xA) = did(A) → dilution thermal factor TCp,A/R = 1/Φ
Thermodynamic Space

(A) Binding Function RlnKdual = (−∆Gdual/T) = {f (1/T)·g(T)}

1. Curved convoluted function ({f (1/T)*g(T)})
Rln Kdual = {(−∆Hdual/T) + (∆Sdual)} = {(−∆Hmot/T) + (−∆Hth/T)} + {(∆Smot) + (∆Sth)}
∂(RlnKdual)/∂(1/T) = −∆Hdual = −∆Hmot − ∆Hth = −∆Hmot − ∆Cp.hydrT (J mole−1)
2. Linear function (f (1/T))
RlnKmot = RlnKdual ={(−∆Hdual/T) + (∆Hth/T)} + {(∆Sdual) − (∆Sth)} = −∆Hmot/T + ∆Smot
∂(RlnKmot)/∂(1/T) = −∆Hmot (J mole−1)

(B) Binding Function RTlnKdual = (−∆Gdual) = {f (T)·g(lnT)}

1. Curved convoluted function ({f (T)·g(lnT)})
RTln Kdual = {−∆Hdual + T ∆Sdual} = {−∆Hmot − ∆Hth} + T {∆Smot + ∆Sth}
∂(RTlnKdual)/∂T = ∆Sdual = ∆Smot + ∆Sth = ∆Smot + ∆Cp,hydrlnT (J K−1 mole−1)
2. linear function (f (T))
RTlnKmot = {−∆Hdual + ∆Hth} + T {∆Sdual − ∆Sth} = −∆Hmot + T ∆Smot
∂(RTlnKmot)/∂T = ∆Smot

(C) Activity: aA = f (xA,T)

dSDens = −Rdln aA = (−Rdln xA)T + (Cp,A dlnT)x

(D) Ergodicity

Density Entropy (∆S/R) and Intensity Entropy (∆H/RT)
(dSDens)T = (−Rdln xA)T = (Rdlndid,A)T → (Changing Density Entropy)
(dSInt)xA = (Cp,A dlnT)xA → (Changing Intensity Entropy)
TED (Thermal Equivalent Dilution)
(dSDen)T = (dSInt)xA
nw (Rdln did,A)T = nw (Cp,A dlnT) xA

(E) Hydrophobic Heat Capacity

∆Cp,hydr = ±ξw Cp,w; Cp,w = 75.36 J K−1mol−1 (molar heat capacity for liquid water)
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Appendix B

Table A2. Validation of the Ergodic Algorithmic Model (EAM). For analysis of unitary thermody-
namic functions (*), see reference [8].

(a) Analysis within Classes

Class A:
iceberg formation Unit Relative error

<∆hfor>A= −22.7 ± 0.07 kJ·mol−1 ·ξw
−1 ±3.1%

<∆sfor>A = −445 ± 3 J·K−1·mol−1·ξw
−1 ±0.7%

Class B:
iceberg reduction Unit Relative error

<∆hred>B = +23.7 ± 0.6 kJ·mol−1 ·ξw
−1 ±2.51%

<∆sred> B = +432 ± 4 J·K−1·mol−1·ξw
−1 ±0.9%

(b) Comparison among Classes

Enthalpy Entropy

<∆hfor>A = −22.7 ± 0.7 kJ mol−1 ξw
−1 <∆sfor>A = −445 ± 3J K−1 mol−1 ξw

−1

<∆hred>B = +23.7 ± 0.6 Kj mol−1 ξw
−1 <∆sred>B = +432 ± 4 J K−1 mol−1 ξw

−1

mean abs.value <∆h>A,B = 22.95 ± 0.75 mean abs.value <∆s>A,B = 438.5 ± 6.5

Student’s ratio: 0.75/0.92 = 0.815 Student’s ratio: 6.5/5 = 1.3
(*) Mean values obtained from more than eighty different sets, with about 600 data points. Note the small
variability ±σ, indicating that all the points belong to a unique homogeneous statistical population. Hypothesis:
absolute values in Class A and B are equal: hypothesis accepted (mean in Class A = mean in Class B with
sign reversed).
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