48 research outputs found

    Gain variations as induced by the diffuse night sky background: the ASTRI-Horn experience

    Full text link
    ASTRI-Horn is the prototype of the nine telescopes that form the ASTRI Mini-Array, under construction at the Teide Observatory in Spain, devoted to observe the sky above 10 TeV. It adopts an innovative optical design based on a dual-mirror Schwarzschild-Couder configuration, and the camera, composed by a matrix of monolithic multipixel silicon photomultipliers (SiPMs) is managed by ad-hoc tailored front-end electronics based on a peak-detector operation mode. During the Crab Nebula campaign in 2018-2019, ASTRI-Horn was affected by gain variations induced by high levels of night sky background. This paper reports the work performed to detect and quantify the effects of these gain variations in shower images. The analysis requested the use of simultaneous observations of the night sky background flux in the wavelength band 300-650 nm performed with the auxiliary instrument UVscope, a calibrated multi-anode photomultiplier working in single counting mode. As results, a maximum gain reduction of 15% was obtained, in agreement with the value previously computed from the variance of the background level in each image. This ASTRI-Horn gain reduction was caused by current limitation of the voltage supply. The analysis presented in this paper provides a method to evaluate possible variations in the nominal response of SiPMs when scientific observations are performed in the presence of high night sky background as in dark or gray conditions.Comment: 14 pages, 8 figures -- Submitted to Journal of Instrumentation (JINST) peer review on 10 November 202

    Muon calibration of the ASTRI-Horn telescope: preliminary results

    Get PDF
    Astri-Horn is a Small-Sized Telescope (SST) for very-high energy gamma-ray astronomy installed in Italy at the INAF "M.C. Fracastoro" observing station (Mt. Etna, Sicily). The ASTRI-Horn telescope is characterized by a dual-mirror optical system and a curved focal surface covered by SiPM sensors managed by a innovative fast front-end electronics. Dedicated studies were performed to verify the feasibility of the calibration through muons on the relatively small size of the primary mirror (~4 m diameter), as in the case of larger Cherenkov telescopes. A number of tests were performed using simulations of the atmospheric showers with the CORSIKA package and of the telescope response with a dedicated simulator. In this contribution we present a preliminary analysis of muon events detected by ASTRI-Horn during the regular scientific data taking performed in December 2018 and March 2019. These muon events validate the results obtained with the simulations and definitively confirm the feasibility of calibrating the ASTRI-Horn SST telescope with muons.Comment: Proceedings of the 36th International Cosmic Ray Conference, Madison, Wisconsin, USA, 24 July-1 August 201

    Galactic observatory science with the ASTRI Mini-Array at the Observatorio del Teide

    Get PDF
    The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Mini-Array will be composed of nine imaging atmospheric Cherenkov telescopes at the Observatorio del Teide site. The array will be best suited for astrophysical observations in the 0.3-200 TeV range with an angular resolution of few arc-minutes and an energy resolution of 10-15%. A core-science programme in the first four years will be devoted to a limited number of key targets, addressing the most important open scientific questions in the very-high energy domain. At the same time, thanks to a wide field of view of about 10 degrees, ASTRI Mini-Array will observe many additional field sources, which will constitute the basis for the long-term observatory programme that will eventually cover all the accessible sky. In this paper, we review different astrophysical Galactic environments, e.g. pulsar wind nebulae, supernova remnants, and gamma -ray binaries, and show the results from a set of ASTRI Mini-Array simulations of some of these field sources made to highlight the expected performance of the array (even at large offset angles) and the important additional observatory science that will complement the core-science program

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    The Software Architecture and development approach for the ASTRI Mini-Array gamma-ray air-Cherenkov experiment at the Observatorio del Teide

    Get PDF
    The ASTRI Mini-Array is an international collaboration led by the Italian National Institute for Astrophysics (INAF) and devoted to the imaging of atmospheric Cherenkov light for very-high gamma-ray astronomy. The project is deploying an array of 9 telescopes sensitive above 1 TeV. In this contribution, we present the architecture of the software that covers the entire life cycle of the observatory, from scheduling to remote operations and data dissemination. The high-speed networking connection available between the observatory site, at the Canary Islands, and the Data Center in Rome allows for ready data availability for stereo triggering and data processing

    The methodological approach for the generation of human dendritic cells from monocytes affects the maturation state of the resultant dendritic cells

    No full text
    Dendritic cells (DCs) are effective as antigen-presenting cells in the immune system and are present at two functional stages depending on their maturation state. For experimental investigation of this concept, CD14(+) monocytes from blood are isolated and cultured to generate in vitro the DCs needed for functional analysis. For positive selection of CD14(+) monocytes we compared two immunomagnetic bead technologies: MACS Separation, created by Miltenyi Biotec, and EasySep Selection, created by StemCell Technologies. The monocytes provided dendritic cells for their functional analysis. Lipopolysaccharide was added to cultured DCs to induce maturation. Although both systems generated DCs from the positively selected CD14(+) cells, there were certain differences between them. Morphological, phenotypic, and functional analysis showed that MACS-selection provided DCs that have typical features corresponding to day 6 or 7 of maturation. EasySep-DCs exist in a partially-mature state from day 6 onward, even without the addition of a maturation stimulus. The reason behind this partial maturation is possibly based on the dextran-coated beads that are associated with the EasySep product. Both methods provide pure and viable DCs, but we would recommend using the MACS system for obtaining DCs suitable for functional studies

    Stimuli responsive gels based on interpenetrating network of chitosan and poly(vinyl pyrrolidone)

    Get PDF
    summary:We take some well-known inequalities for Green functions relative to Laplace's equation, and prove not only analogues of them relative to the heat equation, but generalizations of those analogues to the heat potentials of nonnegative measures on an arbitrary open set EE whose supports are compact polar subsets of EE. We then use the special case where the measure associated to the potential has point support, in the following situation. Given a nonnegative supertemperature on an open set EE, we prove a formula for the associated Riesz measure of any point of EE in terms of a limit inferior of the quotient of the supertemperature and the Green function for EE with a pole at that point
    corecore