282 research outputs found

    High refractive index inverse vulcanized polymers for organic photonic crystals

    Get PDF
    Photonic technologies are nowadays dominated by highly performing inorganic structures that are commonly fabricated via lithography or epitaxial growths. Unfortunately, the fabrication of these systems is costly, time consuming, and does not allow for the growth of large photonic structures. All-polymer photonic crystals could overcome this limitation thanks to easy solubility and melt processing. On the other hand, macromolecules often do not offer a dielectric contrast large enough to approach the performances of their inorganic counterparts. In this work, we demonstrate a new approach to achieve high dielectric contrast distributed Bragg reflectors with a photonic band gap that is tunable in a very broad spectral region. A highly transparent medium was developed through a blend of a commercial polymer with a high refractive index inverse vulcanized polymer that is rich in sulfur, where the large polarizability of the S–S bond provides refractive index values that are unconceivable with common non-conjugated polymers. This approach paves the way to the recycling of sulfur byproducts for new high added-value nanostructures

    Automatic Forecast of Intensive Care Unit Admissions: The Experience During the COVID-19 Pandemic in Italy

    Get PDF
    The experience of the COVID-19 pandemic showed the importance of timely monitoring of admissions to the ICU admissions. The ability to promptly forecast the epidemic impact on the occupancy of beds in the ICU is a key issue for adequate management of the health care system. Despite this, most of the literature on predictive COVID-19 models in Italy has focused on predicting the number of infections, leaving trends in ordinary hospitalizations and ICU occupancies in the background. This work aims to present an ETS approach (Exponential Smoothing Time Series) time series forecasting tool for admissions to the ICU admissions based on ETS models. The results of the forecasting model are presented for the regions most affected by the epidemic, such as Veneto, Lombardy, Emilia-Romagna, and Piedmont. The mean absolute percentage errors (MAPE) between observed and predicted admissions to the ICU admissions remain lower than 11% for all considered geographical areas. In this epidemiological context, the proposed ETS forecasting model could be suitable to monitor, in a timely manner, the impact of COVID-19 disease on the health care system, not only during the early stages of the pandemic but also during the vaccination campaign, to quickly adapt possible preventive interventions

    Long-lived photoexcited states in polydiacetylenes with different molecular and supramolecular organization

    Get PDF
    With the aim of determining the importance of the molecular and supramolecular organization on the excited states of polydiacetylenes, we have studied the photoinduced absorption spectra of the red form of poly[1,6-bis(3,6-didodecyl-N-carbazolyl)-2,4-hexadiyne] (polyDCHD-S) and the results compared with those of the blue form of the same polymer. An interpretation of the data is given in terms of both the conjugation length and the interbackbone separation also in relation to the photoinduced absorption spectra of both blue and red forms of poly[1,6-bis(N-carbazolyl)-2,4-hexadiyne] (polyDCHD), which does not carry the alkyl substituents on the carbazolyl side groups. Information on the above properties is derived from the analysis of the absorption and Raman spectra of this class of polydiacetylenes

    All-polymer methylammonium lead iodide perovskite microcavities

    Get PDF
    open8Thanks to a high photoluminescence quantum yield, large charge carrier diffusion, and ease of processing from solution, perovskite materials are becoming increasingly interesting for flexible optoelectronic devices. However, their deposition requires wide range solvents that are incompatible with many other flexible and solution-processable materials, including polymers. Here, we show that methylammonium lead iodide (MAPbI3) films can be directly synthesized on all-polymer microcavities via simple addition of a perfluorinated layer which protects the polymer photonic structure from the perovskite processing solvents. The new processing provides microcavities with a quality factor Q = 155, that is in agreement with calculations and the largest value reported so far for fully solution processed perovskite microcavities. Furthermore, the obtained microcavity shows strong spectral and angular redistribution of the the MAPbI3 photoluminescence spectrum, which shows a 3.5 fold enhanced intensity with respect to the detuned reference. The opportunity to control and modify the emission of a MAPbI3 film via a simple spun-cast polymer structure is of great interest in advanced optoelectronic applications requiring high colour purity or emission directionality.openLova, Paola; Giusto, Paolo; Di Stasio, Francesco; Manfredi, Giovanni; Paternò, Giuseppe M; Cortecchia, Daniele; Soci, Cesare; Comoretto, DavideLova, Paola; Giusto, Paolo; DI STASIO, Francesco; Manfredi, Giovanni; Paternò, Giuseppe M; Cortecchia, Daniele; Soci, Cesare; Comoretto, David

    Shine Bright Like a Diamond: New Light on an Old Polymeric Semiconductor

    Get PDF
    Brilliance usually refers to the light reflected by the facets of a gemstone such as diamond due to its high refractive index. Nowadays, high-refractive-index materials find application in many optical and photonic devices and are mostly of inorganic nature. However, these materials are usually obtained by toxic or expensive production processes. Herein, the synthesis of a thin-film organic semiconductor, namely, polymeric carbon nitride, by thermal chemical vapor deposition is presented. Among polymers, this organic material combines the highest intrinsic refractive index reported so far with high transparency in the visible spectrum, even reaching the range of diamond. Eventually, the herein presented deposition of high quality thin films and their optical characteristics open the way for numerous new applications and devices in optics, photonics, and beyond based on organic materials

    A project for polarimetric observations in single dish with Medicina and Noto 32 m antennas

    Get PDF
    A project with multidisciplinary characteristics, aimed to implement the possibility of polarimetric measurements in single dish at the VLBI stations of Medicina and Noto, is presented. The project will open a new window on many astrophysical items that may be approached using the already existing instrumentation and facilities of the two Italian radioastronomical stations. We report here some scientific backgrounds, together with some technical evaluations, on which the feasibility of the project is based

    Fitting Early Phases of the COVID-19 Outbreak: A Comparison of the Performances of Used Models

    Get PDF
    The COVID-19 outbreak involved a spread of prediction efforts, especially in the early pandemic phase. A better understanding of the epidemiological implications of the different models seems crucial for tailoring prevention policies. This study aims to explore the concordance and discrepancies in outbreak prediction produced by models implemented and used in the first wave of the epidemic. To evaluate the performance of the model, an analysis was carried out on Italian pandemic data from February 24, 2020. The epidemic models were fitted to data collected at 20, 30, 40, 50, 60, 70, 80, 90, and 98 days (the entire time series). At each time step, we made predictions until May 31, 2020. The Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE) were calculated. The GAM model is the most suitable parameterization for predicting the number of new cases; exponential or Poisson models help predict the cumulative number of cases. When the goal is to predict the epidemic peak, GAM, ARIMA, or Bayesian models are preferable. However, the prediction of the pandemic peak could be made carefully during the early stages of the epidemic because the forecast is affected by high uncertainty and may very likely produce the wrong results

    The TNG Near Infrared Camera Spectrometer

    Get PDF
    NICS (acronym for Near Infrared Camera Spectrometer) is the near-infrared cooled camera-spectrometer that has been developed by the Arcetri Infrared Group at the Arcetri Astrophysical Observatory, in collaboration with the CAISMI-CNR for the TNG (the Italian National Telescope Galileo at La Palma, Canary Islands, Spain). As NICS is in its scientific commissioning phase, we report its observing capabilities in the near-infrared bands at the TNG, along with the measured performance and the limiting magnitudes. We also describe some technical details of the project, such as cryogenics, mechanics, and the system which executes data acquisition and control, along with the related software.Comment: 7 pages, 5 figures, compiled with A&A macros. A&A in pres

    Lasing from dot-in-rod nanocrystals in planar polymer microcavities

    Get PDF
    Colloidal nanocrystals attract considerable attention in the field of light emitting devices thanks to their high fluorescence quantum yield, low amplified spontaneous emission (ASE) threshold, and spectral tunability via electronic structure engineering and surface functionalization. Combining polymer microcavities with colloidal nanocrystals as gain material promises a solution-based fabrication route to plastic laser cavities as well as applications in the field of smart flexible large area light sources and sensors. Here we demonstrate lasing from polymer microcavities embedding solution processable dot-in-rod (DiR) CdSe/CdS nanocrystals. Two highly reflective polymer dielectric mirrors are prepared by spin-coating of alternated layers of polyacrylic acid and poly(N-vinyl carbazole), with their photonic band gap tailored to the emission of the DiRs. The DiRs are enclosed in the polymer microcavity by drop-cast deposition on one mirror, followed by pressing the mirrors onto each other. We obtain excellent overlap of the ASE band of the DiRs with the photonic band gap of the cavity and observe optically pumped lasing at 640 nm with a threshold of about 50 \u3bcJ cm-2

    Luminescent solar concentrators: boosted optical efficiency by polymer dielectric mirrors

    Get PDF
    We report on the optical efficiency enhancement of luminescent solar concentrators based on a push\u2013 pull fluorophore realized using high dielectric contrast polymer distributed Bragg reflectors as back mirrors. The Bragg stacks are obtained by alternating layers of cellulose acetate and thin films of a new stable and solution processable hydrated titania\u2013poly(vinyl alcohol) nanocomposite (HyTiPVA) with a refractive index greater than 1.9 over a broad spectral range. The results obtained with these systems are compared with enhancements provided by standard Bragg reflectors made of commercial polymers. We demonstrate that the application of the Bragg stacks with photonic band-gap tuned to the low energy side of the dye emission spectrum induces a 10% enhancement of optical efficiency. This enhancement is the result of a photon recycling mechanism and is retained even in a scaled-up device where the Bragg mirrors are used in a mosaic configuratio
    • …
    corecore