320 research outputs found

    Comment on Partition Function of Anyon Gas

    Get PDF
    The general structure of the partition function of an anyon gas is discussed, especially in relation to statements made in Phys. Rev. Lett. 68 (1992) 1621 and Phys. Rev. Lett. 69( 1992) 2877.Comment: 5 pages, Tex (This paper, which was published in Phys. Rev. Lett. but was not available on the archives, is cited in the paper ``Calogero-Sutherland Particles as Quasisemions'', hep-th/9609063

    Evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1x_{1-x}Gdx_{x}O

    Full text link
    Raman scattering studies as functions of temperature, magnetic field, and Gd-substitution are used to investigate the evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1x_{1-x}Gdx_{x}O. These studies reveal a greater richness of phase behavior than have been previously observed using transport measurements: a spin-fluctuation-dominated paramagnetic (PM) phase regime for T >> T^{*} >> TC_{C}, a two-phase regime for T << T^{*} in which magnetic polarons develop and coexist with a remnant of the PM phase, and an inhomogeneous ferromagnetic phase regime for T << TC_{C}

    Spin dependent scattering of a domain-wall of controlled size

    Full text link
    Magnetoresistance measurements in the CPP geometry have been performed on single electrodeposited Co nanowires exchange biased on one side by a sputtered amorphous GdCo layer. This geometry allows the stabilization of a single domain wall in the Co wire, the thickness of which can be controlled by an external magnetic field. Comparing magnetization, resistivity, and magnetoresistance studies of single Co nanowires, of GdCo layers, and of the coupled system, gives evidence for an additional contribution to the magnetoresistance when the domain wall is compressed by a magnetic field. This contribution is interpreted as the spin dependent scattering within the domain wall when the wall thickness becomes smaller than the spin diffusion length.Comment: 9 pages, 13 figure

    Cardiovascular Applications of Hyperpolarized MRI

    Get PDF
    Many applications of MRI are limited by an inherently low sensitivity. Previous attempts to overcome this insensitivity have focused on the use of MRI systems with stronger magnetic fields. However, the gains that can be achieved in this way are relatively small and increasing the magnetic field invariably leads to greater technical challenges. More recently, the development of a range of techniques, which can be gathered under the umbrella term of “hyperpolarization,” has offered potential solutions to the low sensitivity. Hyperpolarization techniques have been demonstrated to temporarily increase the signal available in an MRI experiment by as much as 100,000-fold. This article outlines the main hyperpolarization techniques that have been proposed and explains how they can increase MRI signals. With particular emphasis on the emerging technique of dynamic nuclear polarization, the existing preclinical cardiovascular applications are reviewed and the potential for clinical translation is discussed

    Quantifying normal human brain metabolism using hyperpolarized [1– 13 C]pyruvate and magnetic resonance imaging

    Get PDF
    Hyperpolarized 13 C Magnetic Resonance Imaging ( 13 C-MRI) provides a highly sensitive tool to probe tissue metabolism in vivo and has recently been translated into clinical studies. We report the cerebral metabolism of intravenously injected hyperpolarized [1– 13 C]pyruvate in the brain of healthy human volunteers for the first time. Dynamic acquisition of 13 C images demonstrated 13 C-labeling of both lactate and bicarbonate, catalyzed by cytosolic lactate dehydrogenase and mitochondrial pyruvate dehydrogenase respectively. This demonstrates that both enzymes can be probed in vivo in the presence of an intact blood-brain barrier: the measured apparent exchange rate constant (k PL ) for exchange of the hyperpolarized 13 C label between [1– 13 C]pyruvate and the endogenous lactate pool was 0.012 ± 0.006 s −1 and the apparent rate constant (k PB ) for the irreversible flux of [1– 13 C]pyruvate to [ 13 C]bicarbonate was 0.002 ± 0.002 s −1 . Imaging also revealed that [1– 13 C]pyruvate, [1– 13 C]lactate and [ 13 C]bicarbonate were significantly higher in gray matter compared to white matter. Imaging normal brain metabolism with hyperpolarized [1– 13 C]pyruvate and subsequent quantification, have important implications for interpreting pathological cerebral metabolism in future studies

    Heterogeneity and Strategic Choices: The Case of Stock Repurchases

    Get PDF
    Strategic decisions are fundamentally tough choices. Theory suggests that managers are likely to display bounded rationality. Empirics on the other hand assume rationality in choice behavior. Recognizing this inherent disconnect between theory and empirics, we try to account for behavioral biases using a theoretically consistent choice model. The traditional approach to modeling strategic choice has been to use discrete choice models and make inference on the conditional mean effects. We argue that the conditional mean effect does not capture behavioral biases. The focus should be on the conditional variance. Explicitly modeling the conditional variance (in the discrete choice framework) provides us with valuable information on individual level variation in decision-making. We demonstrate the effect of ignoring the role of variance in choice modeling in the context of firm’s decisions to conduct open market repurchases. We show that when taking into account the heterogeneity in choices, manager’s choices of conducting open market repurchases displays considerable heterogeneity and that not accounting for such heterogeneity might lead to wrong conclusions on the mean effects

    Queen Cleopatra and the other 'Cleopatras': their medical legacy.

    No full text
    Cleopatra is a female figure widespread in Greece (especially in Macedonian territory), Egypt and Syria during the Hellenistic era. Ancient women doctors bearing the name Cleopatra have been identified by a systematic search through the ancient Greek, Latin and Egyptian bibliography, including original resources from the first century BC. Fictional and non-fictional figures have been distinguished and their works identified. Queen Cleopatra of Egypt, Galen's physician assistant, the outcast Metrodora, Cleopatra the Alchemist and Cleopatra the Gynaecologist deliver a story of medicine and name-giving that confuses researchers of the past and intrigues those of the present

    An experimental model for the sharp flat plate in rarefied hypersonic flow.

    No full text
    corecore