119 research outputs found

    Magnetic, electrical, and GPR waterborne surveys of moraine deposits beneath a lake: A case history from Turin, Italy

    Get PDF
    Bathymetry and bottom sediment types of inland water basins provide meaningful information to estimate water reserves and possible connections between surface and groundwater. Waterborne geophysical surveys can be used to obtain several independent physical parameters to study the sediments. We explored the possibilities of retrieving information on both shallow and deep geological structures beneath a morainic lake by means of waterborne nonseismic methods. In this respect, we discuss simultaneous magnetic, electrical, and groundpenetrating radar (GPR) waterborne surveys on the Candia morainic lake in northerly Turin (Italy).We used waterborne GPR to obtain information on the bottom sediment and the bathymetry needed to constrain the magnetic and electrical inversions. We obtained a map of the total magnetic field (TMF) over the lake from which we computed a 2D constrained compact magnetic inversion for selected profiles, along with a laterally constrained inversion for one electrical profile. The magnetic survey detected some deep anomalous bodies within the subbottom moraine. The electrical profiles gave information on the more superficial layer of bottom sediments. We identify where the coarse morainic material outcrops from the bottom finer sediments from a correspondence between high GPR reflectivity, resistivity, and magnetic anomalie

    Preliminary results of P-wave and S-wave measurements by seismic dilatometer test (SPDMT) in Mirandola (Italy)

    Get PDF
    A trial seismic dilatometer-VP (SPDMT) has been recently developed to measure the compressional wave velocity VP, in addition to the shear wave velocity VS and to the DMT geotechnical parameters. The new SPDMT is the combination of the traditional mechanical flat dilatometer (DMT) with an appropriate seismic module placed above the DMT blade. The SPDMT module consist in a probe outfitted with two receivers for measuring the P-wave velocity, along with two receivers for measuring the S-wave velocity. The paper describes the SPDMT equipment, the test procedure and the interpretation of VP and VS measurements, together with some considerations on the potential geotechnical applications which can benefit from the contemporary measurement of the two propagation velocities. Finally, the paper illustrates preliminary results of P-wave and S-wave measurements by SPDMT compared to several cross-hole, down-hole and suspension logging data at the Mirandola test site (Italy), a soft alluvial site which was investigated within the InterPACIFIC (Intercomparison of methods for site parameter and velocity profile characterization) project

    Geophysical methods to support correct water sampling locations for salt dilution gauging

    Get PDF
    To improve water management design, particularly in irrigation areas, it is important to evaluate the baseline state of the water resources, including canal discharge. Salt dilution gauging is a traditional and well-documented technique in this respect. The complete mixing of salt used for dilution gauging is required; this condition is difficult to test or verify and, if not fulfilled, is the largest source of uncertainty in the discharge calculation. In this paper, a geophysical technique (FERT, fast electrical resistivity tomography) is proposed for imaging the distribution of the salt plume used for dilution gauging at every point along a sampling cross section. With this imaging, complete mixing can be verified. If the mixing is not complete, the image created by FERT can also provide a possible guidance for selecting water-sampling locations in the sampling cross section. A water multi-sampling system prototype aimed to potentially take into account concentration variability is also proposed and tested. The results reported in the paper show that FERT provides a three-dimensional image of the dissolved salt plume and that this can potentially help in the selection of water sampling points

    Multiscale seismic characterization and monitoring of a potentially unstable rock mass: the Madonna del Sasso (NW Italy) rockfall

    Get PDF
    Active (e.g. surface refraction and cross-hole tomography) and passive (monitoring of microseismic events) seismic methods can provide a proper characterization of the inner structure of the rock mass and are key to the comprehension of the mechanisms enhancing the instability of rock masses.We propose a multiscale approach for the characterization of the potentially unstable granitic cliff of Madonna del Sasso (NW Italian Alps) integrating prospecting surveys, laboratory tests, long-term microseismic monitoring and numerical modeling. The complex 3-D fracture setting, the geometry of the unstable sector was achieved through field observations, photogrammetric geomechanical analysis and interpretation of on-site seismic surveys, which revealed to be fundamental for constraining the fracture geometry and opening at depth within the rock mass. Physical and mechanical properties of the investigated medium were obtained through laboratory tests on granite samples. Continuous monitoring of ambient vibration at the site (October 2013 - present) did not highlight irreversible changes in the rock mass properties precursory to an acceleration to failure. However, a strong thermal control was found to govern the stability of the cliff, with reversible seasonal opening and closing of fractures resulting from thermal contraction and expansion. Moreover, the vibration modes of the unstable sector were found to be strongly controlled by the complex 3-D geometry of the main fracture planes affecting the site. Detection and location of microseismic events within the prone-to-fall rock mass highlighted the concentration of low energy releases close to the major fracture planes. Microseismic monitoring at the laboratory scale of deformation and rupture processes is expected to further highlight the relationships between energy release, seismic signatures and seismic sources. Finally, finite element modeling on the 3-D geometry allowed an experimental validation and interpretation

    Challenges in shallow target reconstruction by 3D elastic full-waveform inversion - Which initial model?

    Get PDF
    Elastic full-waveform inversion (FWI) is a powerful tool for high-resolution subsurface multiparameter characterization. However, 3D FWI applied to land data for near-surface applications is particularly challenging because the seismograms are dominated by highly energetic, dispersive, and complex-scattered surface waves (SWs). In these conditions, a successful deterministic FWI scheme requires an accurate initial model. Our study, primarily focused on field data analysis for 3D applications, aims at enhancing the resolution in the imaging of complex shallow targets, by integrating devoted SW analysis techniques with a 3D spectral-element-based elastic FWI. From dispersion curves, extracted from seismic data recorded over a sharp-interface shallow target, we build different initial S-wave (VS) and P-wave (VP) velocity models (laterally homogeneous and laterally variable), using a specific data transform. Starting from these models, we carry out 3D FWI tests on synthetic and field data, using a relatively straightforward inversion scheme. The field data processing before FWI consists of band-pass filtering and muting of noisy traces. During FWI, a weighting function is applied to the far-offset traces. We test 2D and 3D acquisition layouts, with different positions of the sources and variable offsets. The 3D FWI workflow enriches the overall content of the initial models, allowing a reliable reconstruction of the shallow target, especially when using laterally variable initial models. Moreover, a 3D acquisition layout guarantees a better reconstruction of the target's shape and lateral extension. In addition, the integration of model-oriented (preliminary monoparametric FWI) and data-oriented (time windowing) strategies into the main optimization scheme has produced further improvement of the FWI results
    • …
    corecore