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ABSTRACT

A new seismic dilatometer (SPDMT) has been developed to combine the measurements of the

flat dilatometer (DMT) geotechnical parameters with both P- and S- waves velocities. This new

SPDMT is composed of the traditional mechanical DMT and four sensors for measuring the

body waves velocities placed above the DMT blade. This SPDMT device is presented here,

and the test procedure and the interpretation of P- and S-wave measurements are discussed.

Results of the application of this new instrument are reported in a test site located in Bondeno

(Emilia Romagna, Italy). Here, challenging water table conditions offer the opportunity to

evaluate the advantage of a combined measure of the two propagation velocities, together

with DMT geotechnical parameters, with the same apparatus for the porosity evaluation and a

more calibrated liquefaction assessment.

Keywords
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Introduction

The development of field testing techniques has shifted the routine site investigation prac-

tices from drilling, sampling, and laboratory testing to direct in situ field testing. Today,

field testing often represents the major part of geotechnical investigations with the advan-

tage that the subsoil is tested in its natural condition with limited disturbance and that

measurements may be conducted also in difficult to sample soils. This is particularly
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relevant for seismic wave velocity measurements for earthquake hazard purposes. Therefore, there is the need for

instrumentation able to acquire multiple parameters with the same investigation tool for a more efficient ap-

proach to geotechnical site characterization, as for the addition of seismic sensors to traditional direct-push

in situ tests. The most used seismic sensors are horizontal geophones or accelerometers, designed for S-wave

velocity (VS) measurements. These combined testing devices are defined as “seismic,” given the added value

of the VS measurement for the characterization (e.g., seismic dilatometer [SDMT] or seismic piezocone

[SCPTU]). Recommendations in recent state-of-the-art articles (e.g., Mayne 2016; Robertson 2016) indicate that

direct-push in situ tests with combined VS measurement offer clear opportunities in the economical and optimal

collection of data for daily site investigations when compared with other invasive seismic tests.

Limited effort has been conversely promoted with respect to the measurement of the P-wave velocity (VP),

although VP has been recognized as sensitive to the full-to-near-saturation transition. It can indeed happen that

soil deposits below the groundwater table (GWT) are not, as usually assumed, fully saturated, as recently doc-

umented by Cox et al. (2018) and Stokoe et al. (2014) for more than 50 sites in Christchurch (New Zealand) using

a new invasive near-surface seismic testing method, the direct-push cross-hole test (DPCH). Therefore, VP drops

from the typical value for saturated materials with low solid skeleton stiffness (i.e., above 1,450 m/s) may be

indicative of partial saturation. A VP variation from 1,450 m/s to 1,200 m/s has been measured by

Jamiolkowski, Ricceri, and Simonini (2009), evidencing the presence of undissolved marsh gas below the

Venice (Italy) sea level. The effectiveness of the use of VP in identifying partial saturated zones has also been

confirmed at a borehole array site by Yang and Sato (2000). The VP capability to map the saturation surface

position in the subsoil may find use in tailings deposits, characterized by a complex hydraulic regime (variable

in time and space), for stability analyses, as it has been experienced for the copper tailings storage disposal at

Zelazny Most (Poland) site (Jamiolkowski 2012). Moreover, VP measurements can support the monitoring of the

soil desaturation for ground improvement, as experienced by Wotherspoon et al. (2017) testing sandy deposits

before and after the installation of stone columns in New Zealand (Christchurch).

Furthermore, laboratory tests (Yoshimi, Tanaka, and Tokimatsu 1989; Ishihara and Tsukamoto 2004) have

shown that the cyclic resistance ratio (CRR) tends to increase significantly with a decrease in VP, particularly

below 500 m/s, and when the VP/VS ratio drops below a value of about 3, as a consequence of the partial saturation

condition. As a result, the liquefaction assessment (“simplified procedure”, Seed and Idriss 1971) can introduce a

partial saturation factor (PSF), inferred from VP, to correct the CRR and properly take into account this phe-

nomenon (Yang, Savidis, and Roemer 2004). This allows a more reliable liquefaction assessment based on com-

bined P- and S-wave velocity data, as recently presented by Amoroso et al. (2018) using DPCH and SDMT results,

and by Cox et al. (2017) combining DPCH and piezocone (CPTU) tests in Christchurch (New Zealand). This

latter case highlights the importance of the use of VPmeasurements to increase the CRR of soils that were partially

saturated below the GWT and to partly explain the false-positive liquefaction prediction provided using only

CPTU data.

Generally, the coupled use of VP and VS can also support the geotechnical characterization in both static and

dynamic analyses in which the elastic constants, including Poisson’s ratio (undrained estimations for saturated

soils), are input variables into the models (Finn 1984). Also, according to Foti, Lai, and Lancellotta (2002), the

theory of linear poroelastodynamics in the low-frequency limit (Biot 1956a; 1956b) can be used for determining

the porosity in fluid-saturated porous media from VP and VS. This possible porosity determination has particular

relevance in difficult to sample materials.

This study presents a new SPDMT recently developed tomeasureVP, together withVS and the flat dilatometer

(DMT) geotechnical parameters. The new equipment is composed of the traditional mechanical DMT blade with

the addition of four appropriate seismic sensors. Preliminary results on the use of this instrumentation have been

already presented (Amoroso et al. 2016) showing that VP and VS by SPDMT are comparable with several other

invasive seismic tests. Here, the SPDMT test setup and the obtained results are presented in a test site in Bondeno

(Ferrara, Italy) within an ongoing detailed seismicmicrozonation study, following the 2012 Emilia Romagna earth-

quake and related liquefaction phenomena. The site has been selected because it is located in the residential area of
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the municipality, and it is characterized by shallow soil deposits related to the hydrographic evolution of the Po

river and its Apennine tributaries, such as the Panaro river (Stefani et al. 2018). These deposits were preliminarily

identified as potentially liquefiable. The GWT is expected to be quite shallow because of the combined presence of

the Panaro river, a stream of the Po river, that flows from the southwest to the north east through the village, and

two artificial channels (Cavo Napoleonico and Canale di Burana) that border the town.

The New SPDMT

The SPDMT is the combination of the DMT equipment, standardized in ASTM D6635-15, Standard Test

Method for Performing the Flat Plate Dilatometer (2015) with a VP–VS seismic probe (fig. 1). The blade provides

two corrected pressure readings, p0 and p1, used to determine the geotechnical parameters with the current

DMT correlations (Marchetti 1980): the material index, ID, the constrained modulus, M, the undrained shear

strength, su, and the horizontal stress index, KD. An additional DMT-corrected pressure reading, p2, may also be

acquired to detect the equilibrium pore pressure, u0, in sandy layers, or to distinguish soil layers of different

permeability.

SEISMIC INSTRUMENTATION

The seismic probe is equipped with two vertical geophones, spaced 0.6 m, for measuring VP, along with two

horizontal geophones, spaced 0.5 m, for measuring VS (fig. 1A). Geophones have appropriate frequency and

sensitivity characteristics (28 Hz and 0.600 V/ips) to determine the seismic wave train arrival according to

ASTM D7400-14, Standard Test Methods for Downhole Seismic Testing (2014). A biaxial inclinometer is also

located at the midpoint of the seismic probe (fig. 1A) to monitor the tilt during the penetration and to eventually

correct VP and VS measurements. Two different seismic sources are used to generate P- or S-waves at the ground

surface. An impulsive source hitting vertically a squared base is used for P-waves, whereas a manual or pendulum

hammer hitting horizontally an appropriate base is used for S-waves (fig. 1C). The most successful solution tested

FIG. 1

Trial SPDMT-VP: (A) DMT

blade and SPDMT

module; (B) SPDMT

equipment; and

(C) example of P-wave

and S-wave seismic

sources.
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for generating P-wave is the combination of a heavy metal hammer, such as a standard penetration test (SPT)

device, with a metal base. This metal-on-metal impact allows to generate high frequency providing higher res-

olution of P-wave seismograms with depth. The S-wave source, generally 10 kg heavy, is oriented parallel to the

receiver axis, eventually using reverse polarity shots, to increase the sensitivity to the generated shear waves. Both

P- and S-wave sources are usually located at a distance of 1 to 2 m from the penetrating rods of the DMT and

connected to two different external triggers. However, when possible, it is probably best to place the shear source

closer to the rods (even less than 1 m) to have the S-waves travel nearly vertical. Different consideration needs to

be highlighted for the compression source, because the placement of the source at distance less than 1 m typically

generates rod waves contaminating the P-wave arrivals. Special adaptors that mechanically decouple the rods

from the SDMT probe have been observed, in preliminary experiments, to not be particularly useful in breaking

the contact between the soil and the push rods. Further details on the seismic sources are provided for the pre-

sented case study in the next section. The seismic signal, acquired by the geophones, is amplified and digitized at

depth. The recording system consists of one channel for each geophone, having identical phase characteristics and

adjustable gain control. Usual sampling intervals of 50 μs and 200 μs are used respectively for P- and S-waves.

TESTING METHODOLOGY

Both the DMT and the seismic tests are conducted by progressively advancing the SPDMT probe and repeating

the measurements at different depth intervals. The DMT measurements are usually executed at 0.2 m intervals,

whereas the seismic data are acquired each 0.5 m. This depth step allows a partial superposition of the lower and

the upper geophones of the seismic module in consecutive lowerings that may be potentially used for trace stack-

ing, resulting in a single trace at the desired depth. Shot stacking at each depth, usually 3 to 5 hits, is also com-

monly performed both for P- and S-wave measurements.

Recorded traces are plotted as a function of depth, and the P- and S-wave arrival times (Tp) in each receiver

position during penetration are determined. This determination can be based both on manual first break picking

or using cross-correlation algorithms. The applicability of cross-correlation algorithms depends on the quality of

the recorded traces and of the seismic pulse to be correlated. Better results are usually obtained for S-waves with

respect to P-waves; for these last, manual picking can be a useful alternative. In the following, only the first break

manual picking has been used for comparison. The test interpretation can rely both on the interpolation method,

considering arrival times at each receiver with depth, or on the true-interval method, considering the delay be-

tween two consecutive receivers at depth.

In the first case the arrival times are corrected by the raypath inclination with:

Tc =
�

d
SD

�
· Tp (1)

where SD is the straight-line slanted travel path from the source to the receiver (assuming linear raypath), d is

the depth, for each sensor, and Tp is the picked first arrival travel time, related either to P- or S-waves. All the

corrected arrival times (Tc) are then plotted with depth to interpolate homogeneous velocity intervals. The in-

terpolation method is commonly used in the analysis of downhole data (Auld 1977), and it is often convenient

when layering has to be determined, reducing inaccuracies in the arrival time determination mediating among

multiple data. In the true-interval method, seismic velocity is obtained as the ratio between the difference in

distance among the source and the two receivers (SD2–SD1) and their delay time (Tp2–Tp1).

SPDMT Survey

The area of study belongs to the external part of the Apennine chain, buried beneath the recent alluvial plain. This

portion of the chain consists of blind thrust and fold structures, generated through Neogene and Quaternary

times (Minarelli et al. 2016). The compressive tectonic regime is responsible for the 2012 Emilia Romagna
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earthquake and for the previous historical earthquake of the area. The Bondeno test site is located in the transi-

tional zone between the Po river alluvial plain (north sector) aggraded by sinuous meanders, detectable also by

aerial photos, and the Apennine alluvial plain (south sector), formed mainly by the Panaro river (Stefani et al.

2018).

At the Bondeno site, the SPDMT sounding reached 22.6 m for the DMT readings, while VP and VS mea-

surements were extended up to 30 m. The different investigation depths were related to the aim to use mainly the

DMT data for the liquefaction assessment and the VS acquisition for the ground type classification, as defined by

the time-averaged shear wave velocity at the first 30 meters, VS,30 (EN 1998-1:2004, Eurocode 8: Design of

Structures for Earthquake Resistance – Part 1: General Rules, Seismic Actions and Rules for Buildings).

GEOTECHNICAL PARAMETERS

In figure 2, the obtained DMT geotechnical parameters as a function of depth are reported. According to the soil

classification based on ID, the site is characterized by silts with interbedded clays and sands in the upper 5.4 m,

then clays and silty clays, with relatively low stiffness and strength parameters, are observed up to 18.8 m. Thin

layers of silty sands and sandy silts are placed between 11.8 m and 13.4 m. For depths greater than 18.8 m, silty

sands and sandy silts with higher stiffness are encountered. The previous lithologies may be associated with the

levee of the paleochannel of the Panaro river (above 5.4 m), to the interfluvial plain deposits (5.4–18.8 m), and to

the paleochannel of the Po river (below 18.8 m). Two different GWTs appear to be detected by the p2 readings

acquired in sandy layers (fig. 2). The shallow GWT can be located at a 3 m depth corresponding to the water level

of the Panaro river. In contrast, the bottom GWT can be related to a confined aquifer, starting from 19 m depth,

whose piezometric surface is attributed at 8 m depth. The disconnection between the two GWTsmay be related to

the clayey layer between a depth of 13 and 19 m.

SEISMIC VELOCITIES

In the present study, P-waves were produced using an impulsive source composed of an SPT device, with a mass

of 63.5 kg and a free fall of 0.76 m, hitting vertically a 1-m-long drill rod placed on an aluminum squared base

(0.2 m by 0.2 m by 0.04 m), with a mass of 3.8 kg (fig. 1C). The S-wave source was a manual hammer (10 kg)

hitting horizontally a wooden rectangular base (0.5 m by 0.15 m by 0.15 m) vertically pressed against the soil (by

the weight of the penetrometer, fig. 1C). The P- and S-wave sources were located at 1.6 and 1.4 m from the rods,

respectively. In figure 3, the recorded traces with depth are reported with evidence of the first break picking. For

both seismic waves, high-quality traces have been achieved after appropriate band pass (5–150 Hz) filtering of the

raw data and stacking of the traces at superimposing geophone locations. Conversely with previous experiences,

FIG. 2 DMT parameters at the Bondeno site.
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in which the P-wave measurement has been attempted (e.g., Amoroso et al. 2016), the adopted P-wave source

configuration strongly reduced the rod waves influence in data acquisition. Particularly, partial rod wave influence

appears only for the shallower geophone locations whereas trace quality seems to improve with depth. The os-

cillating nature of the seismogram prior to the first break picked is also related to the applied band pass filtering,

which was necessary to remove high-frequency noise but deteriorates the trace quality. However, travel time

determination for P-waves resulted more difficult. This was mainly due to the non perfect superposition of geo-

phones locations and the oscillating nature of the arrival times in some soil layer intervals.

Travel time curves resulting after time correction (equation (1)) for both methods are reported in figure 4,

together with the interpolating branches and resulting coefficient of determination (R2). With the exception of

only a few shallow layers having a reduced number of data points, the interpolations are performed over an

average of travel time values. This layered interpretation, obtained using slope breaks evident in the corrected

travel time data as shown in figure 4B, is reported in figure 5, and it is compared with the true-interval in-

terpretation. The layered interpretation is very consistent, given the high quality of the interpolation, whereas

true-interval results appears partially sparse, particularly for P-waves, because of the aforementioned difficulties

in travel time determination. Nevertheless, the same velocity variability within the stratigraphy can be ascertained:

FIG. 3

SPDMT recorded seismic

traces at the Bondeno

site for: (A) P-waves and

(B) S-waves.
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VS data corroborate the difference between the soil deposits in the upper 19 m (VS≈ 150 m/s) and the bottom

paleochannel of the Po river (VS≈ 250 m/s), as already found by theM profile; VP data confirm the location of the

two different aquifers preliminarily detected by DMT readings. The soil deposits appear fully saturated

(VP≈ 1,500 m/s) between 3 and 13 m and at depths greater than 19 m. Between these saturated layers, a VP

and small VS velocity reduction is observed. This low VP layer may be attributed to partially saturated clays lying

above the lower sand formation hosting the confined aquifer. The presence of isolated gas bubbles may be also

contemplated within this soil layer, because several gas emissions are documented in the Emilia Romagna plain

(e.g., Bonzi et al. 2017).

Further interpretations of the seismic velocity data are also reported in figure 6 in terms of VP/VS ratio,

Poisson’s ratio, and porosity. This last parameter has been obtained using VP and VS data within the saturated

layers following the formulation proposed by Foti and Passeri (2016), which provides also a closed-form formula

for the propagation of parameter uncertainties. The used formulation is dependent on properties that assume

rather standard values (grain density, water density, water bulk modulus) and on the Poisson’s ratio of the soil

skeleton. This last has a limited range of variability in soils (typically 0.1–0.2 for both clays and sands), and it can

FIG. 4

SPDMT travel time

curves after time

correction (equation (1)):

(A) P-waves and

(B) S-waves.

FIG. 5

SPDMT results in terms

of (A) VP and (B) VS at

the Bondeno site; both

interpolation method

(continuous lines) and

true-interval method

(dots) are reported.
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be shown to have negligible influence on the estimated values of porosity (Foti, Lai, and Lancellotta 2002).

Coherently with the previously reported results, Poisson’s ratio values (fig. 6B) are higher within the saturated

layers, with typical values for saturated materials (i.e., above 0.48) with low solid skeleton stiffness. A decrease in

Poisson’s ratio is instead observed in the shallower layers, and between 13 and 19 m of depth, confirming a partial

saturation condition of this last portion of the soil stratigraphy. This behavior is justified because Poisson’s ratio

values, calculated from VP/VS ratios, are undrained values that do not reflect the stiffness of the soil skeleton when

the soil is nearly or completely saturated. The proposed Poisson’s calculation is related to the small deformation

level (elastic behavior) to which propagation of seismic velocities refers, and shear wave anisotropy is neglected.

This last could be eventually considered, using SDMT, by adopting specific acquisition methods, which take into

account of eventual transversal anisotropy (e.g., Foti et al. 2006). However, whether the soil is isotropic or not,

when it is saturated, Poisson’s ratio values calculated from VP/VS ratios will be much higher than the Poisson’s

ratio values for the soil skeleton, this last should be therefore assumed a priori. Both VP/VS ratio and porosity data

(fig. 6A and 6C) report a difference in the two saturated layers, which could be related to their different con-

stituting material. Higher VP/VS ratios and lower porosities are observed in the upper clayey and silty clayey layer

while lower VP/VS ratios and relatively higher porosities are observed in the silty sands and sandy silts of the

paleochannel of the Po river. However, it must be observed that the porosity values below 19 m show a higher

variability and parameter uncertainty, and, also considering the DMT results, the estimated porosity could result

overestimated.

The liquefaction assessment of the silty sandy layer at 13.5-m depth has been performed using the “simplified

procedure.” The cyclic stress ratio (CSR) at 7.5 earthquake magnitude (CSR7.5) has been calculated (Idriss and

Boulanger 2008) introducing a moment magnitude equal to 6.14 and a peak ground acceleration of 0.22 g, as

provided by the seismic microzonation guidelines of Emilia Romagna Region. The CRR at 7.5 earthquake mag-

nitude (CRR7.5) has been estimated using both the horizontal stress index KD (Marchetti 2016), and the over-

burden-stress corrected shear wave velocity VS1 (Andrus and Stokoe 2000). In figure 7 the results obtained

introducing or not the partial saturation, by means of appropriate PSF, are reported. The partial saturation

of the silty sandy layer (PSF= 1.47, estimated from VP measurements) influences the soil liquefaction response,

increasing the liquefaction resistance when compared with fully saturated conditions (PSF= 1). According to

Marchetti and Monaco (2018), the CRR7.5–KD prediction has to be considered more reliable with respect to

the CRR7.5–VS1 one, because VS is considerably less sensitive than KD to stress history and because the strains

at which S-waves are measured are much smaller than the strains during liquefaction. However, the non

FIG. 6 SPDMT results in terms of (A) VP/VS ratio, (B) Poisson’s ratio, and (C) porosity at the Bondeno site; both mean

values within the layers (continuous lines) and local values (dots) are reported.
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liquefiability assessment (fig. 7A), obtained with the appropriate use of PSF and with reference to the design

earthquake, appears coherent with observations of no evidence of liquefaction phenomena at this particular test

site, after the 2012 earthquake, with respect to the surroundings.

Conclusions

The results presented in this article report the use of a new SPDMT to measure VP, in addition to VS and to DMT

readings. The SPDMT outcomes have confirmed the high consistency of VS interpretation and an acceptable

confidence for VP values even in nontrivial soil conditions.

The integration of VP and VS with DMT measurements strongly improved the level of knowledge of the

subsoil and allowed a more comprehensive characterization of the stratigraphy. The added potentiality of meas-

uring seismic velocities has the advantage of complementing the geotechnical characterization, particularly with

respect to earthquake hazard purposes. Several Authors (e.g., Marchetti et al. 2008; Amoroso et al. 2014; Cox and

Mayne 2015; Di Mariano et al. 2019) have already presented procedures to calibrate stiffness decay curves using

DMT and VS measurements. The added VP acquisitions can further improve the geotechnical characterization

facilitating the interpretation of the pore pressure and degree of saturation profiles with the combined use of p2
data. Moreover, VP measurements also allow for porosity evaluation within saturated layers and more calibrated

liquefaction assessment within the partially saturated soil deposits.
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