1,123 research outputs found
Investigation of low energy space plasma
Analysis techniques and software development, data analysis and modeling, laboratory plasma flow studies, meetings, and publications are presented
Plasma and magnetospheric research
Research developments in the following areas are discussed: (1) an ion trajectory computer code which plots the paths of ions ejected from the polar cusp ionosphere; (2) the response of plasmaspheric ion temperatures to geomagnetic activity; (3) spacecraft sheath effects; (4) plasma flow; (5) neutral gas temperatures; and (6) instrument fabrication, modification, and maintenance
Magnetospheric research
Research concerning the magnetosphere is discussed in terms of satellite data analysis, instrument studies and developments, solar terrestrial studies, meetings, and consultants
Plasma and magnetospheric research
Several programs and variations have been developed to determine statistical means of different plasma parameters when binned in different variables. These parameters include temperature, densities and spacecraft potentials for any of the ion species, as well as ratios of these variables for any other ion species to the corresponding variable for H(+). The variables for binning include L, radial distance, and geomagnetic latitude; and separate statistics are automatically run for local morning and local evening data. These programs all run from output files from the plasma parameter thin sheath analysis program. A variant program also bins for magnetic activity, using either Kp or Dst, which requires an additional magnetic activity input file. These programs can be run either interactively or in batch mode, using file listings generated by a DIRECTORY command. In addition to printed output, these programs generate output files which can be used to plot the results. Programs to plot these averaged data are under development
Space plasma research
Temperature and density analysis in the Automated Analysis Program (for the global empirical model) were modified to use flow velocities produced by the flow velocity analysis. Revisions were started to construct an interactive version of the technique for temperature and density analysis used in the automated analysis program. A sutdy of ion and electron heating at high altitudes in the outer plasmasphere was initiated. Also the analysis of the electron gun experiments on SCATHA were extended to include eclipse operations in order to test a hypothesis that there are interactions between the 50 to 100 eV beam and spacecraft generated photoelectrons. The MASSCOMP software to be used in taking and displaying data in the two-ion plasma experiment was tested and is now working satisfactorily. Papers published during the report period are listed
Investigation of low energy space plasma
A statistical study of 1982 data for occurrences of equatorially trapped plasma has been extended. The previous survey, which utilized only the MSFC summary fiche, has been supplemented with the GSFC summary fiche, which has had the effect of substantially improving the late 1982 coverage. It was found that in the post midnight region (1 - 3 LT), the trapped plasma is limited to + or - 5 degrees magnetic latitude, while in the early afternoon (13-15 LT), latitude ranges as high as + or 30 degrees are found. This survey has provided a link to earlier ATS-6 and ISEE studies of pancake distributions. Although the most energetic, and most anisotopic plasmas are trapped within a few degrees of the equator, the results of these equatorial interactions extend substantially along the magnetic field line in the afternoon and dusk region and these high latitude extensions were previously studied by the Huntsville group. Results of this study were incorporated into a revision of the equatorial ion paper, which has been resubmitted and accepted for publication
Magnetospheric space plasma investigations
The topics addressed are: (1) generalized semikinetic models; (2) collision-collisionless transition model; (3) observation of O+ outflows; (4) equatorial transitions; (5) inner plasmasphere-ionosphere coupling; (6) plasma wave physical processes; (7) ULF wave ray-tracing; and (8) nighttime anomalous electron heating events
Investigation of low energy space plasma
An important modification was made in the method for computing ion densities from DE1/RIMS observations, based on the observed relationship between total plasma density and spacecraft potential. An iterative technique was developed to require that this relationship be preserved in all individual observations, not just in the average sense observed. Results of employing this technique were examined closely and are found to generally improve the final densities in terms of agreement with densities obtained from PWI upper hybrid frequency observations. It also has the effect of reducing scatter in the density vs. L profiles
Space plasma physics research
During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included
Topological partition relations to the form omega^*-> (Y)^1_2
Theorem: The topological partition relation omega^{*}-> (Y)^{1}_{2}
(a) fails for every space Y with |Y| >= 2^c ;
(b) holds for Y discrete if and only if |Y| <= c;
(c) holds for certain non-discrete P-spaces Y ;
(d) fails for Y= omega cup {p} with p in omega^{*} ;
(e) fails for Y infinite and countably compact
- …