37 research outputs found

    Influence of Translocations on Eastern Wild Turkey Population Genetics in Texas

    Get PDF
    Between 1979 and 2006, over 7,000 eastern wild turkeys (Meleagris gallopavo silvestris) from 16 states were translocated to east Texas in an attempt to restore a stable, huntable population. Although current populations are stable in some areas and a spring male-only hunting season was opened in 1995, turkey density in the region remains low and large areas of apparently suitable habitat are not occupied. The longterm effects of the extensive translocations and current levels of connectivity among various populations are unknown. We used microsatellite DNA analysis to assess the influence of translocations on current genetic structure and gene flow in eastern wild turkeys. The influence of translocations was clearly evident and reflected historical contributions from the Midwest and southeastern United States. The east Texas population consisted of 3 distinct genetic clusters. Despite a lack of clear geographic barriers and nearly contiguous forest cover in much of the east Texas landscape, regional gene flow among clusters appeared to be limited. Diversity in the regional population remains high, but we recommend that regulations reflect the current population structure and that long-term efforts should be made to increase connectivity among wild turkeys in the region

    Experiences teaching operating systems using virtual platforms and Linux

    Full text link

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Experiences teaching operating systems using virtual platforms and linux

    No full text

    Glycosylation substrate specificity of Pseudomonas aeruginosa 1244 pilin

    No full text
    The β-carbon of the Pseudomonas aeruginosa 1244 pilin C-terminal Ser is a site of glycosylation. The present study was conducted to determine the pilin structures necessary for glycosylation. It was found that although Thr could be tolerated at the pilin C terminus, the blocking of the Ser carboxyl group with the addition of an Ala prevented glycosylation. Pilin from strain PA103 was not glycosylated by P. aeruginosa 1244, even when the C-terminal residue was converted to Ser. Substituting the disulfide loop region of strain PA103 pilin with that of strain 1244 allowed glycosylation to take place. Neither conversion of 1244 pilin disulfide loop Cys residues to Ala nor the deletion of segments of this structure prevented glycosylation. It was noted that the PA103 pilin disulfide loop environment was electronegative, whereas that of strain 1244 pilin had an overall positive charge. Insertion of a positive charge into the PA103 pilin disulfide loop of a mutant containing Ser at the C terminus allowed glycosylation to take place. Extending the tail region of the PA103 mutant pilin containing Ser at its terminus resulted in robust glycosylation. These results suggest that the terminal Ser is the major pilin glycosylation recognition feature and that this residue cannot be substituted at its carboxyl group. Although no other specific recognition features are present, the pilin surface must be compatible with the reaction apparatus for glycosylation to occur. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc

    Direct Inhibition of T-Lymphocyte Activation by Anthrax Toxins In Vivo

    No full text
    The causative agent of anthrax, Bacillus anthracis, produces two toxins that contribute in part to its virulence. Lethal toxin is a metalloprotease that cleaves upstream mitogen-activated protein kinase kinases. Edema toxin is a calmodulin-dependent adenylate cyclase. Previous studies demonstrated that the anthrax toxins are important immunomodulators that promote immune evasion of the bacterium by suppressing activation of macrophages and dendritic cells. Here we showed that injection of sublethal doses of either lethal or edema toxin into mice directly inhibited the subsequent activation of T lymphocytes by T-cell receptor-mediated stimulation. Lymphocytes were isolated from toxin-injected mice after 1 or 4 days and stimulated with antibodies against CD3 and CD28. Treatment with either toxin inhibited the proliferation of T cells. Injection of lethal toxin also potently inhibited cytokine secretion by stimulated T cells. The effects of edema toxin on cytokine secretion were more complex and were dependent on the length of time between the injection of edema toxin and the isolation of lymphocytes. Treatment with lethal toxin blocked multiple kinase signaling pathways important for T-cell receptor-mediated activation of T cells. Phosphorylation of the extracellular signal-regulated kinase and the stress-activated kinase p38 was significantly decreased. In addition, phosphorylation of the serine/threonine kinase AKT and of glycogen synthase kinase 3 was inhibited in T cells from lethal toxin-injected mice. Thus, anthrax toxins directly act on T lymphocytes in a mouse model. These findings are important for future anthrax vaccine development and treatment

    GeneChip Analyses of Global Transcriptional Responses of Murine Macrophages to the Lethal Toxin of Bacillus anthracis

    No full text
    We performed GeneChip analyses on RNA from Bacillus anthracis lethal toxin (LeTx)-treated RAW 264.7 murine macrophages to investigate global effects of anthrax toxin on host cell gene expression. Stringent analysis of data revealed that the expression of several mitogen-activated protein kinase kinase-regulatory genes was affected within 1.5 h post-exposure to LeTx. By 3.0 h, the expression of 103 genes was altered, including those involved in intracellular signaling, energy production, and protein metabolism

    Identification of the Pseudomonas aeruginosa 1244 Pilin Glycosylation Site

    No full text
    Previous work (P. Castric, F. J. Cassels, and R. W. Carlson, J. Biol. Chem. 276:26479-26485, 2001) has shown the Pseudomonas aeruginosa 1244 pilin glycan to be covalently bound to a serine residue. N-terminal sequencing of pilin fragments produced from endopeptidase treatment and identified by reaction with a glycan-specific monoclonal antibody indicated that the glycan was present between residue 75 and the pilin carboxy terminus. Further sequencing of these peptides revealed that serine residues 75, 81, 84, 105, 106, and 108 were not modified. Conversion of serine 148, but not serine 118, to alanine by site-directed mutagenesis, resulted in loss of the ability to carry out pilin glycosylation when tested in an in vivo system. These results showed the pilin glycan to be attached to residue 148, the carboxy-terminal amino acid. The carboxy-proximal portion of the pilin disulfide loop, which is adjacent to the pilin glycan, was found to be a major linear B-cell epitope, as determined by peptide epitope mapping analysis. Immunization of mice with pure pili produced antibodies that recognized the pilin glycan. These sera also reacted with P. aeruginosa 1244 lipopolysaccharide as measured by Western blotting and enzyme-linked immunosorbent assay

    Physiological Responses to Multiple Low-Doses of Bacillus anthracis Spores in the Rabbit Model of Inhalation Anthrax

    No full text
    Bacillus anthracis spores that are re-aerosolized from surface deposits after initial contamination present significant health risks for personnel involved in decontamination. To model repeated exposure to low dose B. anthracis spores, three groups of seven rabbits were challenged with multiple low-doses of B. anthracis spores 5 days a week for 3 weeks. Mortality, body temperature, heart and respiration rates, hematology, C-reactive protein, bacteremia, and serum protective antigen were monitored for 21 days post-exposure after the last of multiple doses. All rabbits exposed to a mean daily dose of 2.91 × 102 colony forming units (CFU) survived and showed minimal physiological changes attributable to exposure. One of seven rabbits receiving a mean daily dose of 1.22 × 103 CFU died and four of seven receiving a mean daily dose of 1.17 × 104 CFU died. The LD50 was calculated to be 8.1 × 103 CFU of accumulated dose. Rabbits that succumbed to the higher dose exhibited bacteremia and increases above baseline in heart rate, respiration rate, and body temperature. Two rabbits in the mean daily dose group of 1.17 × 104 CFU exhibited clinical signs of inhalation anthrax yet survived. This study provides a description of lethality, pathophysiology, and pathology in a controlled multiple low-dose inhalation exposure study of B. anthracis in the rabbit model. The data suggest that the accumulated dose is important in survival outcome and that a subset of rabbits may show clinical signs of disease but fully recover without therapeutic interventio
    corecore