631 research outputs found

    Particle Currents in a Space-Time dependent and CP-violating Higgs Background: a Field Theory Approach

    Get PDF
    Motivated by cosmological applications like electroweak baryogenesis, we develop a field theoretic approach to the computation of particle currents on a space-time dependent and CP-violating Higgs background. We consider the Standard Model model with two Higgs doublets and CP violation in the scalar sector, and compute both fermionic and Higgs currents by means of an expansion in the background fields. We discuss the gauge dependence of the results and the renormalization of the current operators, showing that in the limit of local equilibrium, no extra renormalization conditions are needed in order to specify the system completely.Comment: 21 pages, LaTeX file, uses epsf.sty. 4 figures available as a compressed .ep

    The role of the top mass in b-production at future lepton colliders

    Full text link
    We compute the one loop contribution coming from vertex and box diagrams, where virtual top quarks are exchanged, to the asymptotic energy behaviour of bbˉb\bar b pair production at future lepton colliders. We find that the effect of the top mass is an extra linear logarithmic term of Sudakov type that is not present in the case of (u,d,s,c) production. This appears to be particularly relevant in the case of the bbˉb\bar{b} cross section.Comment: 9 pages and 3 figures; version submitted to Phys.ReV.D,Rapid. e-mail: [email protected]

    Logarithmic expansion of electroweak corrections to four-fermion processes in the TeV region

    Full text link
    Starting from a theoretical representation of the electroweak component of four-fermion neutral current processes that uses as theoretical input the experimental measurements at the Z peak, we consider the asymptotic high energy behaviour in the Standard Model at one loop of those gauge-invariant combinations of self-energies, vertices and boxes that contribute all the different observables. We find that the logarithmic contribution due to the renormalization group running of the various couplings is numerically overwhelmed by single and double logarithmic terms of purely electroweak (Sudakov-type) origin, whose separate relative effects grow with energy, reaching the 10% size at about one TeV. We then propose a simple "effective" parametrization that aims at describing the various observables in the TeV region, and discuss its validity both beyond and below 1 TeV, in particular in the expected energy range of future linear electron-positron (LC) and muon-muon colliders.Comment: 23 pages and 9 figures; version submitted to Phys.Rev.D. e-mail: [email protected]

    Towards a Nonequilibrium Quantum Field Theory Approach to Electroweak Baryogenesis

    Get PDF
    We propose a general method to compute CPCP-violating observables from extensions of the standard model in the context of electroweak baryogenesis. It is alternative to the one recently developed by Huet and Nelson and relies on a nonequilibrium quantum field theory approach. The method is valid for all shapes and sizes of the bubble wall expanding in the thermal bath during a first-order electroweak phase transition. The quantum physics of CPCP-violation and its suppression coming from the incoherent nature of thermal processes are also made explicit.Comment: 19 pages, 1 figure available upon e-mail reques

    SUSY virtual effects at the LEP2 boundary

    Get PDF

    Initial State Radiation in Majorana Dark Matter Annihilations

    Full text link
    The cross section for a Majorana Dark Matter particle annihilating into light fermions is helicity suppressed. We show that, if the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, the emission of gauge bosons from the initial state lifts the suppression and allows an s-wave annihilation. The resulting energy spectra of stable Standard Model particles are importantly affected. This has an impact on indirect searches for Dark Matter.Comment: 9 pages, 3 figure
    corecore