5 research outputs found
View-invariant Pose Analysis for Human Movement Assessment from RGB Data
International audienceWe propose a CNN regression method to generate high-level, view-invariant features from RGB images which are suitable for human pose estimation and movement quality analysis. The inputs to our network are body joint heatmaps and limb-maps to help our network exploit geometric relationships between different body parts to estimate the features more accurately. A new multiview and multimodal human movement dataset is also introduced to evaluate the results of the proposed method. We present comparative experimental results on pose estimation using a manifold-based pose representation built from motion-captured data. We show that the new RGB derived features provide pose estimates of similar or better accuracy than those produced from depth data, even from single views only