63 research outputs found

    Zwitterion functionalized gold nanoclusters for multimodal near infrared fluorescence and photoacoustic imaging

    Get PDF
    International audienceGold nanoclusters (Au NCs) are an emerging type of theranostic agents combining therapeutic and imaging features with reduced toxicity. Au NCs stabilized by a zwitterion ligand with a fine control of the metal core size and the ligand coverage were synthesized by wet chemistry. Intense fluorescence signal is reported for the highest ligand coverage whereas photoacoustic signal is stronger for the largest metal core. The best Au NCs candidate with an average molecular weight of 17 kDa could be detected with high sensitivity on a 2D-NIR imaging instrument (LOD = 2.3 µM) and by photoacoustic imaging. In vitro and in vivo experiments demonstrate an efficient cell uptake in U87 cell lines, a fast renal clearance (t 1/2 α = 6.5±1.3 min) and a good correlation between near 2 infrared fluorescence and photoacoustic measurements to follow the early uptake of Au NCs in liver

    Zwitterion functionalized gold nanoclusters for multimodal near infrared fluorescence and photoacoustic imaging

    Get PDF
    Gold nanoclusters (Au NCs) are an emerging type of theranostic agents combining therapeutic and imaging features with reduced toxicity. Au NCs stabilized by a zwitterion ligand with a fine control of the metal core size and the ligand coverage were synthesized by wet chemistry. Intense fluorescence signal is reported for the highest ligand coverage, whereas photoacoustic signal is stronger for the largest metal core. The best Au NC candidate with an average molecular weight of 17 kDa could be detected with high sensitivity on a 2D-near-infrared imaging instrument (limit of detection (LOD) = 2.3 μM μM ) and by photoacoustic imaging. In vitro and in vivo experiments demonstrate an efficient cell uptake in U87 cell lines, a fast renal clearance (t 1/2α t1/2α = 6.5 ± 1.3 min), and a good correlation between near infrared fluorescence and photoacoustic measurements to follow the early uptake of Au NCs in liver

    Photoluminescence of Fully Inorganic Colloidal Gold Nanocluster and Their Manipulation Using Surface Charge Effects

    Get PDF
    International audienceFully inorganic, colloidal gold nanoclusters (NCs) constitute a new class of nanomaterials that are clearly distinguishable from their commonly studied metal–organic ligand-capped counterparts. As their synthesis by chemical methods is challenging, details about their optical properties remain widely unknown. In this work, laser fragmentation in liquids is performed to produce fully inorganic and size-controlled colloidal gold NCs with monomodal particle size distributions and an fcc-like structure. Results reveal that these NCs exhibit highly pronounced photoluminescence with quantum yields of 2%. The emission behavior of small (2–2.5 nm) and ultrasmall (<1 nm) NCs is significantly different and dominated by either core- or surface-based emission states. It is further verified that emission intensities are a function of the surface charge density, which is easily controllable by the pH of the surrounding medium. This experimentally observed correlation between surface charge and photoluminescence emission intensity is confirmed by density functional theoretical simulations, demonstrating that fully inorganic NCs provide an appropriate material to bridge the gap between experimental and computational studies of NCs. The presented study deepens the understanding of electronic structures in fully inorganic colloidal gold NCs and how to systematically tune their optical properties via surface charge density and particle size

    Ultrafast dynamics of chiral molecules in gas phase

    No full text
    La chiralité est une propriété géométrique caractérisant les objets qui ne sont pas superposables à leur image dans un miroir. Nos mains en sont un exemple emblématique, puisqu’elles existent sous deux formes différentes droite et gauche. Si la chiralité s'observe à toutes les échelles de l'univers, elle joue un rôle particulièrement important en chimie. Une molécule chirale et son image miroir peuvent réagir différemment avec leur environnement et être thérapeutiques ou toxiques. Ces effets ont évidemment d'immenses répercussions sur le règne animal et végétal. Il apparaît alors clairement qu'il est essentiel d’étudier précisément les dynamiques des réactions chimiques chirales.Dans cette thèse, nous avons étudié les dynamiques ultrarapides de molécules chirales par des sources lasers de durée femtosecondes)(10⁻¹⁵s). La chiralité moléculaire étant généralement difficile à détecter, nous avons ici utilisé une technique récente, le dichroïsme circulaire de photoélectrons (PECD) qui permet de générer un signal chiral très important. Nous avons ainsi observé des dynamiques moléculaires ultrarapides jusqu'à l'échelle attoseconde (10⁻¹⁸s), et mis en avant des dynamiques de relaxation et d'ionisation encore jamais observées.Parallèlement à ces études résolues en temps, nous avons développé plusieurs expériences employant une nouvelle source laser Yb fibrée à haute cadence et grande puissance moyenne. Nous avons développé une nouvelle méthode, par extension du PECD, qui nous a permis de mesurer la compositions d'échantillons chiraux rapidement avec une grande précision. Enfin, nous avons développé une ligne de lumière XUV ultrabrève de très haute brillance (∽2mW). Cette source, couplée à un détecteur de photoélectrons et photoions en coïncidence, servira à étudier les mécanismes de reconnaissance chirale.Chirality is a geometric property that characterizes objects that cannot be superposed on their mirror image. Our hands are an emblematic example of this, since they exist in two different forms, right and left. While chirality is observed at all scales in the universe, it plays a particularly important role in chemistry. A chiral molecule and its mirror image can react differently with their environment and be therapeutic or toxic. These effects obviously have immense repercussions on the animal and plant kingdom. It then becomes clear that it is essential to study precisely the dynamics of chiral chemical reactions.In this thesis, we studied the ultrafast dynamics of chiral molecules by laser sources of femtosecond duration (10⁻¹⁵s). Molecular chirality is generally difficult to detect, so we have used a recent technique, circular photoelectron dichroism (PECD), to generate a very important chiral signal. We have thus observed ultrafast molecular dynamics at the attosecond scale (10⁻¹⁸s), and highlighted relaxation and ionization dynamics never observed before.In parallel to these time-resolved studies, we have developed several experiments using a new high repetition rate, high mean power Yb fiber laser. We have developed a new method, by extending the PECD, that has allowed us to measure the composition of chiral samples quickly and accurately. Finally, we have developed an ultra-short XUV beamline with very high brightness (∽2mW). This source, coupled with a photoelectron and photoion coincidence detector, will be used to study chiral recognition mechanisms
    corecore